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Integer Partitions

An integer partition of n is a sequence of positive integers
A1 > Ao > ... > A, such that

)\1+...—i—)\k:n.

The number of partitions of n is denoted by p(n).
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Integer Partitions

An integer partition of n is a sequence of positive integers
A1 > Ao > ... > A, such that

)\1+...—i—)\k:n.

The number of partitions of n is denoted by p(n).

Example

The partitions of 4 are
4, 3+1, 2+2, 241+1, 1+14+1+1.

Thus, p(4) = 5.
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Jensen Polynomials

Let a: N — R be be an arithmetic function. The Jensen
polynomial of degree d and shift n associated to a is

(7Y = Ed: <j’> a(n+ ).

Jj=0
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Jensen Polynomials

Let a: N — R be be an arithmetic function. The Jensen
polynomial of degree d and shift n associated to a is

(7Y = Ed: <j’> a(n+ ).

Jj=0

Remark

With Taylor coefficients of an entire function f as our terms we
obtain

d
d . ,
I(2) =I5z =D (J) F(r+(0)2.

j=1



Roots of Polynomials, Integer Partitions, and L-Functions

Jensen Polynomials

A polynomial f(x) € R[x] is hyperbolic if all of its roots are real.
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Jensen Polynomials

A polynomial f(x) € R[x] is hyperbolic if all of its roots are real.

The hyperbolicity of Jensen polynomials can encode information
about a sequence.
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Jensen Polynomials

The roots of Jg’”(z) = ap422° 4 2ap41z + ap are

_ —dn+1 + \/(an+1)2 — dp+424n
an42

Jg’"(z) is hyperbolic if and only if (a,11)? > ani2an.
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Jensen Polynomials Over p(n)

Theorem (Nicolas (1978), Desalvo and Pak (2013))
If n > 26 then Jg’"(z) is hyperbolic.
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Jensen Polynomials Over p(n)

Theorem (Nicolas (1978), Desalvo and Pak (2013))
If n > 26 then Jg’"(z) is hyperbolic.

A Look Ahead

Griffin, Ono, Rolen, and Zagier (2019) showed for every degree d,
there exists an N(d) such that if n > N(d) then J3"(2) is
hyperbolic.
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The Riemann Zeta and Xi Functions

For s € C with o > 1, we define the Riemann zeta function

¢(s) := Ziil %
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For s € C with o > 1, we define the Riemann zeta function

¢(s) =201 -

The Riemann Xi-function is the entire function
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The Riemann Zeta and Xi Functions

For s € C with o > 1, we define the Riemann zeta function

¢(s) =201 -

The Riemann Xi-function is the entire function

=@)= 3 (-2-3)wt i (E+ 5) ¢ (- g).

Riemann Hypothesis is true <= all zeros of = are real.
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Function Order

The order of a function f is given by

o(F) = lim sup log log M(f; r)

)
r—00 log r

where M(f; r) is the maximum modulus function.
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Function Order

The order of a function f is given by

o(F) = lim sup log log M(f; r)

)
r—o0 log r

where M(f; r) is the maximum modulus function.

The function = has order 1.
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The Laguerre-Pélya Class

A real entire function 1(z) belongs to the Laguerre-Pélya class, if

oo
P(z) = Ce P H <1 + Z> e ,

Z
k=1 k

where b, C,zx € R, m € Z>g, a >0 and Zk21x;2 < 0.
If for 1(z) € L — P, either ¢(z) or ¢(—z) is

mUXOO 4
P(z) = CzMe kl;[1<1+2k>,

with C € R, m€ Z>q, 0 > 0, z, >0, and ZkZIZ,:I < oo then
we say 1) is type | and we denote ¢ € L — PI.
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Let I be a linear operator defined by ', (x*) = ~,x*.
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Multiplier Sequences

Definition
Let I be a linear operator defined by ', (x*) = ~,x*.

A sequence of real numbers {74 }x>0 is a multiplier sequence of
type | if [, (p(x)) has only real zeros whenever the real polynomial
p(x) has only real zeros.
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Multiplier Sequences

Definition

Let I be a linear operator defined by ', (x*) = ~,x*.

A sequence of real numbers {74 }x>0 is a multiplier sequence of
type | if [, (p(x)) has only real zeros whenever the real polynomial
p(x) has only real zeros.

A sequence of real numbers {74 }«>0 is a multiplier sequence of
type Il if [,(p(x)) has only real zeros whenever p(x) has only real
zeros with the same sign.
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Multiplier Sequences, £ — P, and Jensen Polynomials

Theorem (Pdlya)

If {vk} k>0 is a sequence of nonnegative real numbers, then the
following are equivalent:

{Vk} k>0 is a multiplier sequence.
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Multiplier Sequences, £ — P, and Jensen Polynomials

Theorem (Pdlya)

If {vk} k>0 is a sequence of nonnegative real numbers, then the
following are equivalent:

{Vk} k>0 is a multiplier sequence.

For each d, the polynomial Jff’o(z) has all real non-positive
roots. Equivalently, J9°(z) € £ — PI.
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Multiplier Sequences, £ — P, and Jensen Polynomials

Theorem (Pdlya)

If {vk} k>0 is a sequence of nonnegative real numbers, then the
following are equivalent:

{Vk} k>0 is a multiplier sequence.

For each d, the polynomial Jff’o(z) has all real non-positive
roots. Equivalently, J9°(z) € £ — PI.

The formal power series ¢(z) =y ;2o &z € L —PI.
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The Shifted Laguerre-Pélya Class

Definition

A real entire function ¢(x) belongs to the shifted Laguerre-Pdlya
class of degree d, denoted SL — P(d), if it's the uniform limit of
polynomials {¢ } k>0 such that QSS,deg((b")_d)(x) has all real roots
for n > N(d) € N.
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The Shifted Laguerre-Pélya Class

Definition

A real entire function ¢(x) belongs to the shifted Laguerre-Pdlya
class of degree d, denoted SL — P(d), if it's the uniform limit of

polynomials {¢ } k>0 such that QSS,deg((b")_d)(x) has all real roots
for n > N(d) € N.

We say ¢ € SL — P(d) is of type I and write ¢ € SL — PI(d) if
all of the roots of ¢p (deg()én—d (x) have the same sign.
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The Shifted Laguerre Pélya Class

Definition
A real entire function ¢.(x) belongs to the shifted
Laguerre-Pdlya class, denoted by SL — P, if ¢, € SL —P(d) for
every d € N.
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The Shifted Laguerre Pélya Class

Definition
A real entire function ¢.(x) belongs to the shifted
Laguerre-Pdlya class, denoted by SL — P, if ¢, € SL —P(d) for
every d € N.
If a real entire function ¢ € SL — P satisfies
n ¢£,deg(¢")_d)(x) has all real roots of the same sign for any
n > N(d) then it is type | and ¢, € SL — P/,
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The Shifted Laguerre Pélya Class

Definition
A real entire function ¢.(x) belongs to the shifted
Laguerre-Pdlya class, denoted by SL — P, if ¢, € SL —P(d) for
every d € N.
If a real entire function ¢ € SL — P satisfies
n ¢£,deg(¢")_d)(x) has all real roots of the same sign for any
n > N(d) then it is type | and ¢, € SL — P/,
m ¢, € SL—PI and v, > 0 for large enough k then we say
¢y € SL—PT
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Properties of SL — P

SL—-P(d)cSL—-P(d—1) forall d € N.
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Properties of SL — P

SL—-P(d)cSL—-P(d—1) forall d € N.
If € L —P then ¢ € SL — P(d) for all d < deg ¢.
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Properties of SL — P

SL—-P(d)cSL—-P(d—1) forall d € N.
If € L —P then ¢ € SL — P(d) for all d < deg ¢.
m If $ € L — P and transcendental then ¢ € SL — P(d) for any

nonnegative integer d.
m In this case we can take N(d) = 0 and consider £ — P as the

shift 0 case of SL — P.
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Properties of SL — P

SL—-P(d)cSL—-P(d—1) forall d € N.
If € L —P then ¢ € SL — P(d) for all d < deg ¢.
m If $ € L — P and transcendental then ¢ € SL — P(d) for any

nonnegative integer d.
m In this case we can take N(d) = 0 and consider £ — P as the

shift 0 case of SL — P.
Functions in SL — P have order at most 2.
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Properties of SL — P

SL—-P(d)cSL—-P(d—1) forall d € N.
If € L —P then ¢ € SL — P(d) for all d < deg ¢.
m If $ € L — P and transcendental then ¢ € SL — P(d) for any

nonnegative integer d.
m In this case we can take N(d) = 0 and consider £ — P as the

shift 0 case of SL — P.
Functions in SL — P have order at most 2.
Functions in SL — PI have order at most 1.
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Shifted Multiplier Sequences

“Definition” (Wagner)

A real sequence {74 }«>0 is an order d multiplier sequence of
type | if, for each n € N, {7« } is a multiplier sequence when
deg(p) > d.

A real sequence {7k }k>0 is a shifted multiplier sequence of
type | (type Il respectively) if for each d € N, there exists an
N(d) such that {7ktn}k>0 is an order d multiplier sequence of
type | (type Il respectively) for all n > N(d).
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Shifted Analog of Pdlya's Theorem

Theorem (Wagner)

If {vk} k>0 is a sequence of nonnegative real numbers, then the
following are equivalent:

{Vk}k>o0 is a shifted multiplier sequence of type I.
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Shifted Analog of Pdlya's Theorem

Theorem (Wagner)
If {vk} k>0 is a sequence of nonnegative real numbers, then the
following are equivalent:

{Vk}k>o0 is a shifted multiplier sequence of type I.

For each d € N, there exists an Ny(d) such that Jg’"(x) has
all real non-positive roots for all n > N(d).
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Shifted Analog of Pdlya's Theorem

Theorem (Wagner)
If {vk} k>0 is a sequence of nonnegative real numbers, then the
following are equivalent:

{Vk}k>o0 is a shifted multiplier sequence of type I.

For each d € N, there exists an Ny(d) such that Jg’"(x) has
all real non-positive roots for all n > N(d).

The formal power series ¢(x) = > oo sz € SL—PI.
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First Motivating Results

Theorem (Griffin, Ono, Rolen, Zagier)

Let a(n) be a real sequence with appropriate growth, then for each
d > 1, all but (possibly) finitely many Jf’”(X) are hyperbolic.
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Appropriate Growth

A real sequence a(n) has appropriate growth if for each j we have
a(n + j) = a(n)E(ny e~ d(*(*/4+o(),

as n — +oo for some real numbers E(n) > 0 and §(n) — 0.
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Appropriate Growth

A real sequence a(n) has appropriate growth if for each j we have

a(n+j) = a(n)E(ny e~ d(M*G*/4+o(),

as n — +oo for some real numbers E(n) > 0 and §(n) — 0.

Remark

A sequence a(n) with an asymptotic formula has appropriate
growth if

og (25 50)) = Atwy — B0 + o(6(0?),

where A(n) >0 and 0 < B(n) — 0.
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Renormalized Jensen Polynomials

If a(n) has appropriate growth, then the renormalized Jensen
polynomials are defined by,

2d

7d,n L . qd,n 6(”)X_1
200 = 5o %" (V)
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Hermite Polynomials

The Hermite polynomials are the polynomials defined by
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Hermite Polynomials

The Hermite polynomials are the polynomials defined by

d9 2
— (-1 d. x> Y _—x
Hq(X) = (-1)% dxde

Classical Results

m Each Hy(X) is hyperbolic with d distinct real roots.
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Hermite Polynomials

The Hermite polynomials are the polynomials defined by

d9 2
— (-1 d. x> Y _—x
Hq(X) = (-1)% dxde

Classical Results

m Each Hy(X) is hyperbolic with d distinct real roots.

m The Hermite polynomials have the exponential generating
function

oo d
> Hg(X) - % = XYY,
d=0 '
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Proving the Hyperbolicity of Jensen Polynomials

Theorem (Griffin, Ono, Rolen, Zagier)

Suppose a(n) has appropriate growth. For each degree d > 1 we
have, R
lim J97(X) = Hg(X).

n—-+o00

Thus, for each d, all but (possibly) finitely many J2"(X) are
hyperbolic.
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Proving the Hyperbolicity of Jensen Polynomials

Theorem (Griffin, Ono, Rolen, Zagier)

Suppose a(n) has appropriate growth. For each degree d > 1 we
have,
: 7d,n _
nkrroo JSM(X) = Hg(X).
Thus, for each d, all but (possibly) finitely many J2"(X) are
hyperbolic.

Proof Idea
The general idea of the proof is to show that for large fixed n,

L yd _y2
d=0
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Bounding the Hyperbolicity of Jensen Polynomials

Let N(f;d) denote the minimal integer such that if n > N(f, d)
then J"(2) is hyperbolic.
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Bounding the Hyperbolicity of Jensen Polynomials

Let N(f; d) denote the minimal integer such that if n > N(f, d)
then Jg’"(z) is hyperbolic.

Main Theorem (Kim and Lee)

Let f be a transcendental real entire function of order p < 2 and
Z(f) C'S. Then, for every ¢ > p we have N(f;d) = O(d/?) as
d — oo.
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Bounding the Hyperbolicity of Jensen Polynomials

Let N(f; d) denote the minimal integer such that if n > N(f, d)
then Jg’"(z) is hyperbolic.

Main Theorem (Kim and Lee)

Let f be a transcendental real entire function of order p < 2 and
Z(f) C'S. Then, for every ¢ > p we have N(f;d) = O(d/?) as
d — oo.

Consequence

Then, p(Z) =1 = N(Z;d) = O(d¥/?*¢) as d — !
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Proof of Main Theorem of Kim and Lee

Let
mS:={zeC:|Im| <1}
m Z(f) be the zero set of the function f
m 5(0):={zeC:|Imz| <J|z|}
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Proof of Main Theorem of Kim and Lee

Theorem (Kim)

Let f be a nonconstant real entire function with 0 < p(f) < 2 and
of minimal type. If there is a positive real number A such that
Z(f) c{z € C : |Imz| < A}, then for any positive constant B
there is a positive integer n such that f(")(z) has only real zeros

1
in |Rez| < Bne forall n > n;.
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Proof of Main Theorem of Kim and Lee

Theorem (Kim)

Let f be a nonconstant real entire function with 0 < p(f) < 2 and
of minimal type. If there is a positive real number A such that
Z(f) c{z € C : |Imz| < A}, then for any positive constant B
there is a positive integer n such that f(")(z) has only real zeros

1
in |Rez| < Bne forall n > n;.

Theorem 2 (Kim and Lee)

Let f be a transcendental real entire function of order p(f) < 2
and Z(f) C S. Then for every ¢ > p(f) there is a positive integer
n1 such that for all n > n

Z(f"M)c {zeS : |Rez| > n*/}UR.
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Proof of Main Theorem of Kim and Lee

Theorem 3 of (Kim and Lee)

Let P and Q be real polynomials, § > 0, Z(P) C 5(9), Q is
hyperbolic, and deg(Q) < §=2. Then the polynomial

degP

P(D)Q = Z P20 g,

is hyperbolic.
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Proof of Main Theorem of Kim and Lee

Theorem 3 of (Kim and Lee)

Let P and Q be real polynomials, § > 0, Z(P) C 5(9), Q is
hyperbolic, and deg(Q) < §=2. Then the polynomial

degP

(k)
P(D)Q = Z Pk(O)Q(k)’
k=0

!
is hyperbolic.

Corollary (Kim and Lee)

Let P be a real polynomial with Z(P) C S(9) for § > 0. Then,
Jg’o(z) is hyperbolic for d < §=2.
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Proof of Main Theorem of Kim and Lee

m By Theorem 2, there exists an n; € N such that if n > ny then

Z(f") c {zeS:|Rez| > n*/} UR.
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Proof of Main Theorem of Kim and Lee

m By Theorem 2, there exists an n; € N such that if n > ny then

Z(f") c {zeS:|Rez| > n*/} UR.

m Let d,n € N such that

EON
n > max\< ng, " ,

and choose § = > 0.

2n l/c
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Proof of Main Theorem of Kim and Lee

m By Theorem 2, there exists an n; € N such that if n > ny then

Z(f") c {zeS:|Rez| > n*/} UR.

m Let d,n € N such that

EON
n > max\< ng, 1 ,

and choose § = > 0.

2n l/c
-2
Then, d < 4n?/¢ = (2n'/€)? = (%) =62
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Proof of Main Theorem of Kim and Lee

m Let Py, Po, ... be real polynomials such that
Z(Py) C Z(f) UR for all k and P, — f uniformly on
compact subsets of C (these exist from partial products of the
Weierstrass factorization of f).
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Proof of Main Theorem of Kim and Lee

m Let Py, Po, ... be real polynomials such that
Z(Py) C Z(f) UR for all k and P, — f uniformly on
compact subsets of C (these exist from partial products of the
Weierstrass factorization of f).

m This implies J5°(z) — J75(2) = J7"(2).
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Proof of Main Theorem of Kim and Lee

m Let Py, Po, ... be real polynomials such that
Z(Py) C Z(f) UR for all k and P, — f uniformly on
compact subsets of C (these exist from partial products of the
Weierstrass factorization of f).

m This implies J5°(z) — J75(2) = J7"(2).

m Since d <672, R C S(6), and if z € Z(f) with |[Rez| > n'/¢
then [Imz|-1< 3. lzl — 1

~Te = 57e 2| = 6]z], the corollary
applies.
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Proof of Main Theorem of Kim and Lee

m Let Py, Po, ... be real polynomials such that
Z(Py) C Z(f) UR for all k and P, — f uniformly on
compact subsets of C (these exist from partial products of the
Weierstrass factorization of f).

m This implies Jg;o(z) — ch_l(,no) (z) = Jrfl’"(z).

m Since d <672, R C S(6), and if z € Z(f) with |[Rez| > n'/¢
then [Imz|-1< 3. ,,|12/|c = 2n%/c\z] = 0|z|, the corollary
applies.

m The corollary gives that Jg;o(z) is hyperbolic for all k.
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Proof of Main Theorem of Kim and Lee

m Let Py, Po, ... be real polynomials such that
Z(Py) C Z(f) UR for all k and P, — f uniformly on
compact subsets of C (these exist from partial products of the
Weierstrass factorization of f).

m This implies Jg;o(z) — Jz’g (z) = J;I’"(z).

m Since d <672, R C S(6), and if z € Z(f) with |[Rez| > n'/¢
then [Imz|-1< 3. ,,|12/|c = Zn%/c\z] = 0|z|, the corollary
applies.

m The corollary gives that Jg;o(z) is hyperbolic for all k.

m This implies Jg’" is hyperbolic with

N(f; d) < {max{nh (ZI)c/zH :

or, equivalently, N(f;d) = O(d*/?) as d — co.l
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Dirichlet Characters

Definition

A Dirichlet character modulo k is a function x: N — C
satisfying

(i) x(1) =1

(i) x(m) = x(n2) if ny = np (mod k);
(i) x(nn2) = x(n1)x(n2);

(iv) x(n) =0 if and only if (n, k) >
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Dirichlet Characters

There are four Dirichlet characters modulo 5, namely

[n(mod5) [[1] 2 [ 3] 4 [0]
Xo(n) 1] 1] 1] 1]o0
x1(n) 1| 7 | —=i|-1]0
x2(n) 1] -1]-1] 110
x3(n) 1| —i| i |-1]0

The Dirichlet character g is called the principal character.
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Dirichlet L-Functions

Let x be any character modulo k. The Dirichlet series for x is

x(n)

ns ’

L(s,x) =
n>1

for any real s > 1.
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Dirichlet L-Functions

Let x be any character modulo k. The Dirichlet series for x is

L(S, X) = M>

ns
n>1

for any real s > 1.

RENEILS

Dirichlet L-functions act similarly to ¢, including having completed
form and analytic continuation to C as well as nontrivial zeros
contained in the strip 0 < Imz < 1.
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Can we generalize the methods of Kim and Lee?

Definition (Wagner)

For a Dirichlet L-function L(x,s), let A(x,s) denote its completed
form. We formally define

=(x,z) = {(_22 o %) A (% - iZ»X) if x is principal
=(x,2): L ; '
7 — 1z, X) otherwise
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Can we generalize the methods of Kim and Lee?

Definition (Wagner)

For a Dirichlet L-function L(x,s), let A(x,s) denote its completed
form. We formally define

=(y,z2) = ( 22— %) A\ (% = iZ,x) if x is principal
s A (% iz, X) otherwise '

RENEILS

We can note that =(, z) is transcendental real entire, with
Z2(=(x,2)) CS.
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Can we generalize the methods of Kim and Lee?

Definition (Wagner)

For a Dirichlet L-function L(x,s), let A(x,s) denote its completed
form. We formally define

=(y,z2) = ( 22— %) A\ (% = iZ,x) if x is principal
s A (% iz, X) otherwise '

RENEILS

We can note that =(, z) is transcendental real entire, with
Z2(=(x,2)) CS.

Thus, we can apply the Main Theorem of Kim and Lee if we verify
p(=(x, 2)) < 2.
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Order of =(x, z)

Let L(s,x) be a Dirichlet L-function. Then, p(=(x, z)) = 1.
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Order of =(x, z)

Let L(s,x) be a Dirichlet L-function. Then, p(=(x,z)) = 1.

We present a proof of this fact which does not exist in the
literature to the author's knowledge.
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Order of =(x, z)

Let L(s,x) be a Dirichlet L-function. Then, p(=(x,z)) = 1.

Remark

We present a proof of this fact which does not exist in the
literature to the author's knowledge.

Additionally, we will use the following implications

p(E062) =1 <= p(L(x;9)) =1 < p((s —1)-L(x,9)) = L.
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Proof that =(, z) has order 1

m We first consider the Laurent series for L(s,x) at s =1,

5_)(1 + i (_1):'7n(X) (S . 1)n’
n=0 '

L(S7X) = s

and multiplying by s — 1 yields

(s —1)L(s,x) = &y + i (_1):"%()()(5 — 1)L
n=0 ’
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Proof that =(, z) has order 1

m We first consider the Laurent series for L(s,x) at s =1,

L(s,x) = V(s 1y,

and multiplying by s — 1 yields

— (—1)"7n(x)
nl

(s—DL(s.x) =0+ Y (s —1)"L
n=0

m We can express the order in terms of the coefficients of the
Laurent series as

nlogn nlogn
p = limsup B = limsup s

n—00 log (‘ (—1);'!yn(x) ’_1> n— _|og (l%(X)|) )
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Proof that =(, z) has order 1

Theorem (Saad Eddin)

Let x be a primitive Dirichlet character modulo q. Then, for every

x  elntl)/2
1<qg<T. &2

o we have

1 m?
|'7n(X)| <q 2 C(n’ q) min <1 -+ D(n, q)v > s

where
C(n,q) ~ exp{—nlogf(n,q) + 6(n, q)log(n, q) + 6(n, q)O(1)},

n

9("7 q) ~ D(n7 q) = 27%ma)=1,

logn’
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Proof that =(x, z) has order 1

We evaluate the following quantities.
m First,
log(6(n, q)) ~ log n — loglog n

m Next,

log C(n, q) ~ logexp{—nlog®(n,q)+ 6(n,q)logh(n,q)+6(n,q)}

n

(log n — loglog n) +

~ —nlogn+ nloglogn+
log n log n

= —nlogn+ O(nloglog n).
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Proof that =(, z) has order 1

m We return to our equation for the order of (s — 1)L(x,s)

. nlogn
p=limsup —————
n—oo |0g ("YH(X)|>
I
< limsup Aogn

o log (q—% C(n, g) min <1 + D(n, q), %2)>
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Proof that =(, z) has order 1

m We return to our equation for the order of (s — 1)L(x,s)

i nlogn
p= ImsupW
n—00 Iog ( Tord, )
_ nlogn
< limsup 1 - 2
n—o00 —Iog (q 2C(n, q) min <1+D(naq)a%)>
nlogn

= lim sup — 108 (C(n. q)) — log <q*% min (1 +D(n, q), %2))
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Proof that =(, z) has order 1

m We return to our equation for the order of (s — 1)L(x,s)

) nlogn
p=Ilim supﬁ
n—o00 log ( ad )
I
< limsup I o8’ 2
n—o00 _|og (q_EC(n, q) min <1+D(n7q)7%>>
_ nlogn
= limsup 1 2
n—oo  — |og (C(n, q)) — log <q7§ min (1 + D(n, q)7 %))
I
= limsup noen

n—soo — (—nlogn+ O(nloglogn))— O(1)
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Proof that =(, z) has order 1

m We return to our equation for the order of (s — 1)L(x,s)

) nlogn
p=Ilim supﬁ
n—o00 log ( ad )
I
< limsup I o8’ 2
n—o00 _|og (q_EC(n, q) min <1+D(n7q)7%>>
_ nlogn
= limsup 1 2
n—oo  — |og (C(n, q)) — log <q7§ min (1 + D(n, q)7 %))
I
= limsup noen

n—soo — (—nlogn+ O(nloglogn))— O(1)

p< 1.
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Proof that =(, z) has order 1

m By contradiction assume p(L(x,s)) < 1.

m Then L(x,s) has genus 0 by Hadamard's Theorem.

m This implies the zeros of { are “sparse.”

m We have the following recent result giving a bound on the
number of zeros of Dirichlet L-functions.

Theorem (Bennett, Martin, O'Bryant, Rechnitzer)

Suppose that the Dirichlet character x has conductor g > 1, and
that T > 5/7. Then, the number of zeros of L(x,s) and height at
most T, N(T,x), is bounded by

T T —1
‘N(T, 0 - <7T|0g2q7re _ X(4)>‘ < 0.22737(+2log(14¢)—0.5,

where £ = log 47+2) > 1 567.
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Proof that =(, z) has order 1

m The number of zeros satisfies N(T,x) ~ T log T.

m This is too many zeros for a genus 0 function so we reach a
contradiction.

m Since 1 < p(=(x,z)) <1, we have that p(=(x,z))=1. B
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Generalizing to Dirichlet L-functions

Theorem

Let x be a principal character modulo q, let L(x,s) be a Dirichlet
L-function, and let =(x, z) be defined as above. Then,

N(=(x,z);d) = O(d%+5) asd — 0.

Proof.

The function =(x, z) is a transcendental real entire function with
order p=1<2and Z(=(x,z)) CS. Choose c =1+ ¢9 > p for
arbitrarily small g > 0. Then, by the Main Theorem of Kim and
Lee, we have that N(Z(x, z); d) = O(d(1+50)/2) = O(d27%) as

d — 0. |
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L-functions

A Dirichlet series is a series of the form

dn

)=

n=1
where s € C and {ap}n>1 is a sequence of complex numbers.

Definition

If a Dirichlet series L(s) admits an meromorphic continuation, it is
called an L-series, and its continuation is called an L-function.



Roots of Polynomials, Integer Partitions, and L-Functions

Good L-Functions

A Dirichlet series L(s) is good if the following hold

L(s) has a completed form, A(s) which has an integral
representation.



Roots of Polynomials, Integer Partitions, and L-Functions

Good L-Functions

A Dirichlet series L(s) is good if the following hold

L(s) has a completed form, A(s) which has an integral
representation.

The function f(t) defined in the integral representation
satisfies f () = N2 thf(t), where € € {+1}.



Roots of Polynomials, Integer Partitions, and L-Functions

Good L-Functions

A Dirichlet series L(s) is good if the following hold
L(s) has a completed form, A(s) which has an integral
representation.
The function f(t) defined in the integral representation
satisfies f () = N2 thf(t), where € € {+1}.
The coefficients of A(s) are real.



Roots of Polynomials, Integer Partitions, and L-Functions

Good L-Functions

A Dirichlet series L(s) is good if the following hold
L(s) has a completed form, A(s) which has an integral
representation.
The function f(t) defined in the integral representation
satisfies f () = N2 thf(t), where € € {+1}.
The coefficients of A(s) are real.
p(A(s)) < 2.
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Generalizing to L-functions

For a good Dirichlet L(s) series with completed form A(s), we

define
=,(2) = (—2z* — k{)/\(% —iz) if A(s) has a pole at s = k
-t - /\(g — iz) otherwise.

m The function =;(z) is transcendental, real, and entire.
m We have p(=;) < 2 by definition.
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Generalizing to L-functions

For a good Dirichlet L(s) series with completed form A(s), we
define

=) = (—22 — k{)/\(% —iz) if A(s) has a pole at s = k
- /\(g — iz) otherwise.

m The function =;(z) is transcendental, real, and entire.
m We have p(=;) < 2 by definition.
m The zero set satisfies Z(=;) C {z€ C: |Imz| < k/2} :=Sk.
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Generalizing to L-Functions

Let L(s) be a good Dirichlet series. Then, N(=.;d) = O(d) for
e>0asd— oo.

m We modify the methods of Kim and Lee.

m We want an analog to their second theorem, which is only
stated for functions satisfying Z(f) C S.
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Proof of the L-Function Bound Continued

Theorem (Kim)

Let f be a nonconstant real entire function with 0 < p(f) < 2 and
of minimal type. If there is a positive real number A such that
Z(f) c{z € C : |Imz| < A}, then for any positive constant B
there is a positive integer n such that f(")(z) has only real zeros

1
in |Rez| < Bne forall n > n;.
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Proof of the L-Function Bound Continued

Theorem (Kim)

Let f be a nonconstant real entire function with 0 < p(f) < 2 and
of minimal type. If there is a positive real number A such that
Z(f) c{z € C : |Imz| < A}, then for any positive constant B
there is a positive integer n such that f(")(z) has only real zeros

1
in |Rez| < Bne forall n > n;.

Theorem 2 (Kim and Lee)

Let f be a transcendental real entire function of order p(f) < 2
and Z(f) C S. Then for every ¢ > p(f) there is a positive integer
n1 such that for all n > n

Z(f"M)c {zeS : |Rez| > n*/}UR.
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Proof of the L-Function Bound Continued

Theorem

Let f be a transcendental real entire function of order p(f) < 2
and Z(f) C S for some k € R. Then for every ¢ > p(f) there is a
positive integer ny such that for all n > n;

Z(FMY c {ze Sk : |Rez| > n'/}UR.

Proof.

We apply the theorem of Kim, choosing A = k/2 (rather than
1/2) and choose B = 1. Then, taking into account the lack of
minimal type condition, for any ¢ > p Kim's theorem implies there
exists an n; € N such that f(")(z) has only real zeros in

|Re z| < n'/€ when n > ny. This implies the theorem. [
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m By the previous theorem, there exists an n; € N such that if
n > np then

Z(f") c {zeS:|Rez| > n*/} UR.

m Let d,n € N such that

k2 c/2
n > max n1,<4-d> ,

and choose § = > 0.
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Proof of the L-Function Bound Continued

m By the previous theorem, there exists an n; € N such that if
n > np then

Z(f") c {zeS:|Rez| > n*/} UR.

m Let d,n € N such that

k2 c/2
n > max n1,<4-d> ,

and choose § = > 0.

2n l/c
-2
Then, d < %nz/c = (%nl/c)2 = <—2 k ) =672
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Proof of the L-Function Bound Continued

m Let Py, Po, ... be real polynomials such that
Z(Py) C Z(f) UR for all k and P, — f uniformly on
compact subsets of C (these exist from partial products of the
Weierstrass factorization of f).

m This implies Jg;o(z) — J;f(’g (z) = J"(2).

m Since d < 672, R C S(6), and if z € Z(f) with |[Rez| > n'/¢
then |[Imz|-1 < g : n‘f/‘c = %Ll/c|z| = §|z|, the corollary of
Kim and Lee applies.
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Proof of the L-Function Bound Continued

m Let Py, Po, ... be real polynomials such that
Z(Py) C Z(f) UR for all k and P, — f uniformly on
compact subsets of C (these exist from partial products of the
Weierstrass factorization of f).

m This implies Jg;o(z) — J;f(’g (z) = J"(2).

m Since d < 672, R C S(6), and if z € Z(f) with |[Rez| > n'/¢
then |Imz|-1§§~n‘f)c :%LI/C
Kim and Lee applies.

m The corollary gives that _/g,’(o(z) is hyperbolic for all k.

|z| = d|z|, the corollary of

m This implies J;I’"(z) is hyperbolic with

N(f;d) < |Vmax {nl, <’f : d> c/zH |

or equivalently N(f; d) = O(d“/?) as d — oo.



Roots of Polynomials, Integer Partitions, and L-Functions

Proof of the L-Function Bound Continued

m In the case of =;(z) choose c =2 > p(Z).



Roots of Polynomials, Integer Partitions, and L-Functions

Proof of the L-Function Bound Continued

m In the case of =;(z) choose c =2 > p(Z).
m Then Jg’L"(z) is hyperbolic with
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Proof of the L-Function Bound Continued

m In the case of =;(z) choose c =2 > p(Z).
m Then Jg’L"(z) is hyperbolic with

N d) < |Vmax{n1’ <kzd>2/2H _ [max{nl,f-d}-"

or equivalently N(=;;d) = O(d) as d — co. B
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Why Do We Care?

Background

m Pdlya showed that RH is equivalent to the hyperbolicity of all
of the Jg’"(z) where 7 are Taylor coefficients of =.

m In this way, results of Griffin, Ono, Rolen, and Zagier provide
evidence for RH and results of Kim and Lee provide further
evidence.

m Similarly, generalization of Wagner provides evidence for the
Generalized Riemann Hypothesis (GRH).

The bound on N(Z,; d) provides further evidence for GRH.
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Can We Generalize to SL — P?

m Methods of Kim and Lee use £ — P properties and work for
functions in £ — P.

m For any good L-Function, =/(z) € SL — P (Wagner).

m Generalization of the methods of Kim and Lee to all of
SL — P (or at least SL — PI) seems natural.
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Problems With Generalizing to SL — P

m For any ¢ € SL — P, the zeros of ¢ can be arbitrarily large.

m For ¢ € SL — P, we only have ¢ < 2.

m We can't use partial products of Weierstrass factorization as
sequence of polynomials converging to ¢ as they are not
contained in S(¢) for any 6 > 0.
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How Would The Generalization Work?

Philosophy of SL — P

For ¢, € SL — P, the Taylor coefficients 7 should act more and
more like Taylor coefficients of a function in £ — P as k grows.

m i.e. at some point (for some large enough shift n), functions
in SL — P act like L —P.

m There should exist an analog of Theorem 2 of Kim and Lee
for functions in £ — P.

m There may exist some ns € N such that if n > ns then ¢(z)
hyperbolic for | Re z| < nt/¢.
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Theorem (Wagner)

For ¢, € SL — P, the sequence of polynomials

k

Pokl2) = Son(z/k) = 3 (j‘) o2/ kY

j=0

converge to ¢(7") uniformly on compact subsets of C as k — oo.
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Results

Theorem (Wagner)
For ¢, € SL — P, the sequence of polynomials

k

Pokl2) = Son(z/k) = 3 (j‘) o2/ kY

Jj=0
converge to ¢(7") uniformly on compact subsets of C as k — oo.

Theorem

If zy is a root of Py ,(z) then there exists an N € N such that if
n> N then

20| < k2. Totk=t
a Yn+k
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Results

We need a bound on the size of the zeros of our polynomials that
is independent of k, n to make the proof work.

Definition

When k < d, we keep the same choice of Py , = Jf/(’"(z/k) but for
k > d we define

Pasalz Zd; (5 )rmsstary.

For k < d, Pin(z) = ﬁd,k,n(z) and when k > d they have the
same first d Taylor coefficients, so Jg’o(z) = Jg’o(z) for all k.
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Results

If zy is a root of ﬁ’\dyk,,,(z) then there exists an N € N such that if
n > N then

k . Vnt+d—1
k—d+1 Yn+d .

’Zo’Sd'

If k < d then k? < d? and if k > d then d - d > d - —5—. Our

bound on the roots of Pd,km(z) should look like d>2M where M
accounts for the v terms.

Question
Do P satisfy Z(P) C S(5) for some § > 0 and large k and n?
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Roots of Py .n(z) with d = 100, k = 10, n = 10°

20 20 40 60 80

-20
30

s
404 *




Roots of Polynomials, Integer Partitions, and L-Functions

Partition Case

If zy is a root of I3d,k7,,(p(i);z) and n > 26 then |z| < d?.




Roots of Polynomials, Integer Partitions, and L-Functions

Partition Case

If zy is a root of ﬁd,kyn(p(i);z) and n > 26 then |z| < d?.

By the previous general theorem and using that p(/) is increasing

2 p(ntk=1)
we (T s

k p(n+d—1)
“k=dT1° p(nta). k>d

<

d?-1 k<d
= = d? Vk.
d-d-1 k>d
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Partition Case

m We have ¢, € SL — P/ (Griffin, Ono, Rolen, Zagier) so
p(dp) < 1.

m Using previous theorem and assuming there exists some
ns € N as described we would choose n, d such that

n > max{ns, 26, d°/?}

and 0(d) = d?/nt/<.
m Then d < §(d)~2 and Z(P) C 5(5(d)) so Corollary of Kim
and Lee would apply.

m Then N(¢p; d) < [max{ns, 26, d>*/?}] which would imply
N(¢p; d) = O(d>175/2) = O(d®/?%) as d — oo.
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Conclusion

m For Dirichlet L-Functions, N(=(x, z); d) = O(d'/?*¢) as
d — oo.

m For good L-functions, N(=;;d) = O(d) as d — co.

Ongoing Work
m Finding n; (i.e. how long it takes for functions in SL — P to
act like £ —P)
m Understanding geometric pattern in roots of P.
m Proving that N(¢,; d) = O(d>/?+¢).

m Final goal of generalizing the bound on N(¢; d) to all of
SL — Pl and potentially all of SL — P.




Roots of Polynomials, Integer Partitions, and L-Functions

Thank Youl



