Roots of Polynomials, Integer Partitions, and *L*-Functions

Joshua Hunt

April 21 2023

Integer Partitions

Definition

An **integer partition of** n is a sequence of positive integers $\lambda_1 \geq \lambda_2 \geq ... \geq \lambda_k$ such that

$$\lambda_1 + \dots + \lambda_k = n.$$

The number of partitions of n is denoted by p(n).

Integer Partitions

Definition

An **integer partition of** n is a sequence of positive integers $\lambda_1 \geq \lambda_2 \geq ... \geq \lambda_k$ such that

$$\lambda_1 + \ldots + \lambda_k = n.$$

The number of partitions of n is denoted by p(n).

Example

The partitions of 4 are

$$4, 3+1, 2+2, 2+1+1, 1+1+1+1.$$

Thus, p(4) = 5.

Definition

Let $a \colon \mathbb{N} \to \mathbb{R}$ be be an arithmetic function. The **Jensen** polynomial of degree d and shift n associated to a is

$$J_a^{d,n}(z) := \sum_{j=0}^d \binom{d}{j} a(n+j) z^j.$$

Definition

Let $a \colon \mathbb{N} \to \mathbb{R}$ be be an arithmetic function. The **Jensen** polynomial of degree d and shift n associated to a is

$$J_a^{d,n}(z) := \sum_{j=0}^d \binom{d}{j} a(n+j) z^j.$$

Remark

With Taylor coefficients of an entire function f as our terms we obtain

$$J_f^{d,n}(z) = J_{f^{(n)}}^{d,0}(z) = \sum_{i=1}^d {d \choose j} f^{(n+j)}(0) z^j.$$

147107127127 2 990

Definition

A polynomial $f(x) \in \mathbb{R}[x]$ is **hyperbolic** if all of its roots are real.

Definition

A polynomial $f(x) \in \mathbb{R}[x]$ is **hyperbolic** if all of its roots are real.

Remark

The hyperbolicity of Jensen polynomials can encode information about a sequence.

Example

The roots of
$$J_a^{2,n}(z) = a_{n+2}z^2 + 2a_{n+1}z + a_n$$
 are

$$z = \frac{-a_{n+1} \pm \sqrt{(a_{n+1})^2 - a_{n+2}a_n}}{a_{n+2}}.$$

 $J_a^{d,n}(z)$ is hyperbolic if and only if $(a_{n+1})^2 \geq a_{n+2}a_n$.

Jensen Polynomials Over p(n)

Theorem (Nicolas (1978), Desalvo and Pak (2013))

If $n \ge 26$ then $J_p^{2,n}(z)$ is hyperbolic.

Jensen Polynomials Over p(n)

Theorem (Nicolas (1978), Desalvo and Pak (2013))

If $n \ge 26$ then $J_p^{2,n}(z)$ is hyperbolic.

A Look Ahead

Griffin, Ono, Rolen, and Zagier (2019) showed for every degree d, there exists an N(d) such that if $n \ge N(d)$ then $J_p^{d,n}(z)$ is hyperbolic.

The Riemann Zeta and Xi Functions

Definition

For $s \in \mathbb{C}$ with $\sigma > 1$, we define the **Riemann zeta function**

$$\zeta(s) := \sum_{n=1}^{\infty} \frac{1}{n^s}.$$

The Riemann Zeta and Xi Functions

Definition

For $s \in \mathbb{C}$ with $\sigma > 1$, we define the **Riemann zeta function**

$$\zeta(s) := \sum_{n=1}^{\infty} \frac{1}{n^s}.$$

Definition

The Riemann Xi-function is the entire function

$$\Xi(z) := \frac{1}{2} \left(-z^2 - \frac{1}{4} \right) \pi^{\frac{iz}{2} - \frac{1}{4}} \Gamma\left(-\frac{iz}{2} + \frac{1}{4} \right) \zeta\left(-iz + \frac{1}{2} \right).$$

The Riemann Zeta and Xi Functions

Definition

For $s \in \mathbb{C}$ with $\sigma > 1$, we define the **Riemann zeta function**

$$\zeta(s) := \sum_{n=1}^{\infty} \frac{1}{n^s}.$$

Definition

The Riemann Xi-function is the entire function

$$\Xi(z) := \frac{1}{2} \left(-z^2 - \frac{1}{4} \right) \pi^{\frac{iz}{2} - \frac{1}{4}} \Gamma\left(-\frac{iz}{2} + \frac{1}{4} \right) \zeta\left(-iz + \frac{1}{2} \right).$$

Remark

Riemann Hypothesis is true \iff all zeros of Ξ are real.

Function Order

Definition

The **order** of a function f is given by

$$\rho(f) = \limsup_{r \to \infty} \frac{\log \log M(f; r)}{\log r},$$

where M(f; r) is the maximum modulus function.

Function Order

Definition

The **order** of a function f is given by

$$\rho(f) = \limsup_{r \to \infty} \frac{\log \log M(f; r)}{\log r},$$

where M(f; r) is the maximum modulus function.

Theorem

The function Ξ has order 1.

The Laguerre-Pólya Class

Definition

A real entire function $\psi(z)$ belongs to the **Laguerre-Pólya class**, if

$$\psi(z) = Cz^m e^{bx - ax^2} \prod_{k=1}^{\infty} \left(1 + \frac{z}{z_k}\right) e^{-\frac{z}{z_k}},$$

where $b, C, z_k \in \mathbb{R}$, $m \in \mathbb{Z}_{\geq 0}$, $a \geq 0$ and $\sum_{k \geq 1} x_k^{-2} < \infty$. If for $\psi(z) \in \mathcal{L} - \mathcal{P}$, either $\psi(z)$ or $\psi(-z)$ is

$$\psi(z) = Cz^m e^{\sigma x} \prod_{k=1}^{\infty} \left(1 + \frac{z}{z_k} \right),$$

with $C \in \mathbb{R}$, $m \in \mathbb{Z}_{\geq 0}$, $\sigma \geq 0$, $z_k > 0$, and $\sum_{k \geq 1} z_k^{-1} < \infty$ then we say ψ is **type I** and we denote $\psi \in \mathcal{L} - \mathcal{P}I$.

Multiplier Sequences

Definition

Let Γ be a linear operator defined by $\Gamma_{\gamma}(x^k) = \gamma_k x^k$.

Multiplier Sequences

Definition

Let Γ be a linear operator defined by $\Gamma_{\gamma}(x^k) = \gamma_k x^k$.

A sequence of real numbers $\{\gamma_k\}_{k\geq 0}$ is a **multiplier sequence of type I** if $\Gamma_{\gamma}(p(x))$ has only real zeros whenever the real polynomial p(x) has only real zeros.

Multiplier Sequences

Definition

Let Γ be a linear operator defined by $\Gamma_{\gamma}(x^k) = \gamma_k x^k$.

A sequence of real numbers $\{\gamma_k\}_{k\geq 0}$ is a **multiplier sequence of type I** if $\Gamma_{\gamma}(p(x))$ has only real zeros whenever the real polynomial p(x) has only real zeros.

A sequence of real numbers $\{\gamma_k\}_{k\geq 0}$ is a **multiplier sequence of type II** if $\Gamma_{\gamma}(p(x))$ has only real zeros whenever p(x) has only real zeros with the same sign.

Multiplier Sequences, $\mathcal{L} - \mathcal{P}$, and Jensen Polynomials

Theorem (Pólya)

If $\{\gamma_k\}_{k\geq 0}$ is a sequence of nonnegative real numbers, then the following are equivalent:

1 $\{\gamma_k\}_{k>0}$ is a multiplier sequence.

Multiplier Sequences, $\mathcal{L} - \mathcal{P}$, and Jensen Polynomials

Theorem (Pólya)

If $\{\gamma_k\}_{k\geq 0}$ is a sequence of nonnegative real numbers, then the following are equivalent:

- 1 $\{\gamma_k\}_{k\geq 0}$ is a multiplier sequence.
- **2** For each d, the polynomial $J_{\gamma}^{d,0}(z)$ has all real non-positive roots. Equivalently, $J_{\gamma}^{d,0}(z) \in \mathcal{L} \mathcal{P}I$.

Multiplier Sequences, $\mathcal{L} - \mathcal{P}$, and Jensen Polynomials

Theorem (Pólya)

If $\{\gamma_k\}_{k\geq 0}$ is a sequence of nonnegative real numbers, then the following are equivalent:

- 1 $\{\gamma_k\}_{k>0}$ is a multiplier sequence.
- **2** For each d, the polynomial $J_{\gamma}^{d,0}(z)$ has all real non-positive roots. Equivalently, $J_{\gamma}^{d,0}(z) \in \mathcal{L} \mathcal{P}I$.
- **3** The formal power series $\phi(z) = \sum_{k=0}^{\infty} \frac{\gamma_k}{k!} z_k \in \mathcal{L} \mathcal{P}I$.

The Shifted Laguerre-Pólya Class

Definition

A real entire function $\phi(x)$ belongs to the **shifted Laguerre-Pólya** class of degree d, denoted $\mathcal{SL}-\mathcal{P}(d)$, if it's the uniform limit of polynomials $\{\phi_k\}_{k\geq 0}$ such that $\phi_n^{(\deg(\phi_n)-d)}(x)$ has all real roots for $n\geq N(d)\in\mathbb{N}$.

The Shifted Laguerre-Pólya Class

Definition

A real entire function $\phi(x)$ belongs to the **shifted Laguerre-Pólya** class of degree d, denoted $\mathcal{SL}-\mathcal{P}(d)$, if it's the uniform limit of polynomials $\{\phi_k\}_{k\geq 0}$ such that $\phi_n^{(\deg(\phi_n)-d)}(x)$ has all real roots for $n\geq N(d)\in\mathbb{N}$.

We say $\phi \in \mathcal{SL} - \mathcal{P}(d)$ is of **type I** and write $\phi \in \mathcal{SL} - \mathcal{P}I(d)$ if all of the roots of $\phi_n^{(deg()\phi_n-d)}(x)$ have the same sign.

The Shifted Laguerre Pólya Class

Definition

A real entire function $\phi_{\gamma}(x)$ belongs to the **shifted** Laguerre-Pólya class, denoted by $\mathcal{SL}-\mathcal{P}$, if $\phi_{\gamma}\in\mathcal{SL}-\mathcal{P}(d)$ for every $d\in\mathbb{N}$.

The Shifted Laguerre Pólya Class

Definition

A real entire function $\phi_{\gamma}(x)$ belongs to the **shifted** Laguerre-Pólya class, denoted by $\mathcal{SL}-\mathcal{P}$, if $\phi_{\gamma}\in\mathcal{SL}-\mathcal{P}(d)$ for every $d\in\mathbb{N}$.

If a real entire function $\phi \in \mathcal{SL} - \mathcal{P}$ satisfies

• $\phi_n^{(\deg(\phi_n)-d)}(x)$ has all real roots of the same sign for any $n \geq N(d)$ then it is **type I** and $\phi_\gamma \in \mathcal{SL} - \mathcal{P}I$.

The Shifted Laguerre Pólya Class

Definition

A real entire function $\phi_{\gamma}(x)$ belongs to the **shifted** Laguerre-Pólya class, denoted by $\mathcal{SL}-\mathcal{P}$, if $\phi_{\gamma}\in\mathcal{SL}-\mathcal{P}(d)$ for every $d\in\mathbb{N}$.

If a real entire function $\phi \in \mathcal{SL} - \mathcal{P}$ satisfies

- $\phi_n^{(\deg(\phi_n)-d)}(x)$ has all real roots of the same sign for any $n \geq N(d)$ then it is **type I** and $\phi_\gamma \in \mathcal{SL} \mathcal{P}I$.
- $\phi_{\gamma} \in \mathcal{SL} \mathcal{P}I$ and $\gamma_k \geq 0$ for large enough k then we say $\phi_{\gamma} \in \mathcal{SL} \mathcal{P}^+$

1
$$\mathcal{SL} - \mathcal{P}(d) \subset \mathcal{SL} - \mathcal{P}(d-1)$$
 for all $d \in \mathbb{N}$.

- 1 $\mathcal{SL} \mathcal{P}(d) \subset \mathcal{SL} \mathcal{P}(d-1)$ for all $d \in \mathbb{N}$.
- 2 If $\phi \in \mathcal{L} \mathcal{P}$ then $\phi \in \mathcal{SL} \mathcal{P}(d)$ for all $d \leq \deg \phi$.

- 1 $\mathcal{SL} \mathcal{P}(d) \subset \mathcal{SL} \mathcal{P}(d-1)$ for all $d \in \mathbb{N}$.
- 2 If $\phi \in \mathcal{L} \mathcal{P}$ then $\phi \in \mathcal{SL} \mathcal{P}(d)$ for all $d \leq \deg \phi$.
 - If $\phi \in \mathcal{L} \mathcal{P}$ and transcendental then $\phi \in \mathcal{SL} \mathcal{P}(d)$ for any nonnegative integer d.
 - In this case we can take N(d) = 0 and consider $\mathcal{L} \mathcal{P}$ as the shift 0 case of $\mathcal{SL} \mathcal{P}$.

- 1 $\mathcal{SL} \mathcal{P}(d) \subset \mathcal{SL} \mathcal{P}(d-1)$ for all $d \in \mathbb{N}$.
- 2 If $\phi \in \mathcal{L} \mathcal{P}$ then $\phi \in \mathcal{SL} \mathcal{P}(d)$ for all $d \leq \deg \phi$.
 - If $\phi \in \mathcal{L} \mathcal{P}$ and transcendental then $\phi \in \mathcal{SL} \mathcal{P}(d)$ for any nonnegative integer d.
 - In this case we can take N(d) = 0 and consider $\mathcal{L} \mathcal{P}$ as the shift 0 case of $\mathcal{SL} \mathcal{P}$.
- **3** Functions in $\mathcal{SL} \mathcal{P}$ have order at most 2.

- 1 $\mathcal{SL} \mathcal{P}(d) \subset \mathcal{SL} \mathcal{P}(d-1)$ for all $d \in \mathbb{N}$.
- 2 If $\phi \in \mathcal{L} \mathcal{P}$ then $\phi \in \mathcal{SL} \mathcal{P}(d)$ for all $d \leq \deg \phi$.
 - If $\phi \in \mathcal{L} \mathcal{P}$ and transcendental then $\phi \in \mathcal{SL} \mathcal{P}(d)$ for any nonnegative integer d.
 - In this case we can take N(d) = 0 and consider $\mathcal{L} \mathcal{P}$ as the shift 0 case of $\mathcal{SL} \mathcal{P}$.
- **3** Functions in $\mathcal{SL} \mathcal{P}$ have order at most 2.
- 4 Functions in $\mathcal{SL} \mathcal{P}I$ have order at most 1.

Shifted Multiplier Sequences

"Definition" (Wagner)

A real sequence $\{\gamma_k\}_{k\geq 0}$ is an **order** d **multiplier sequence of type I** if, for each $n\in\mathbb{N}$, $\{\gamma_k\}$ is a multiplier sequence when $deg(p)\geq d$.

A real sequence $\{\gamma_k\}_{k\geq 0}$ is a **shifted multiplier sequence of type I** (**type II** respectively) if for each $d\in N$, there exists an N(d) such that $\{\gamma_{k+n}\}_{k\geq 0}$ is an order d multiplier sequence of type I (type II respectively) for all $n\geq N(d)$.

Shifted Analog of Pólya's Theorem

Theorem (Wagner)

If $\{\gamma_k\}_{k\geq 0}$ is a sequence of nonnegative real numbers, then the following are equivalent:

1 $\{\gamma_k\}_{k>0}$ is a shifted multiplier sequence of type I.

Shifted Analog of Pólya's Theorem

Theorem (Wagner)

If $\{\gamma_k\}_{k\geq 0}$ is a sequence of nonnegative real numbers, then the following are equivalent:

- $\{\gamma_k\}_{k>0}$ is a shifted multiplier sequence of type I.
- **2** For each $d \in \mathbb{N}$, there exists an $N_2(d)$ such that $J_{\gamma}^{d,n}(x)$ has all real non-positive roots for all $n \geq N_2(d)$.

Shifted Analog of Pólya's Theorem

Theorem (Wagner)

If $\{\gamma_k\}_{k\geq 0}$ is a sequence of nonnegative real numbers, then the following are equivalent:

- $\{\gamma_k\}_{k>0}$ is a shifted multiplier sequence of type I.
- **2** For each $d \in \mathbb{N}$, there exists an $N_2(d)$ such that $J_{\gamma}^{d,n}(x)$ has all real non-positive roots for all $n \geq N_2(d)$.
- The formal power series $\phi(x) = \sum_{k=0}^{\infty} \frac{\gamma_k}{k!} z^k \in \mathcal{SL} \mathcal{P}I$.

First Motivating Results

Theorem (Griffin, Ono, Rolen, Zagier)

Let a(n) be a real sequence with appropriate growth, then for each $d \ge 1$, all but (possibly) finitely many $J_a^{d,n}(X)$ are hyperbolic.

Appropriate Growth

Definition

A real sequence a(n) has **appropriate growth** if for each j we have

$$a(n+j) = a(n)E(n)^{j}e^{-\delta(n)^{2}(j^{2}/4+o(1))},$$

as $n \to +\infty$ for some real numbers E(n) > 0 and $\delta(n) \to 0$.

Appropriate Growth

Definition

A real sequence a(n) has **appropriate growth** if for each j we have

$$a(n+j) = a(n)E(n)^{j}e^{-\delta(n)^{2}(j^{2}/4+o(1))},$$

as $n \to +\infty$ for some real numbers E(n) > 0 and $\delta(n) \to 0$.

Remark

A sequence a(n) with an asymptotic formula has appropriate growth if

$$\log\left(\frac{a(n+j)}{a(n)}\right) = A(n)j - B(n)j^2 + o(\delta(n)^2),$$

where A(n) > 0 and $0 < B(n) \rightarrow 0$.

Renormalized Jensen Polynomials

Definition |

If a(n) has appropriate growth, then the **renormalized Jensen** polynomials are defined by,

$$\widehat{J}_{a}^{d,n}(X) := \frac{2^{d}}{\delta(n)^{d} \cdot a(n)} \cdot J_{a}^{d,n}\left(\frac{\delta(n)X - 1}{E(n)}\right).$$

Hermite Polynomials

Definition

The Hermite polynomials are the polynomials defined by

$$H_d(X) = (-1)^d e^{x^2} \frac{d^d}{dx^d} e^{-x^2}$$

Hermite Polynomials

Definition

The Hermite polynomials are the polynomials defined by

$$H_d(X) = (-1)^d e^{x^2} \frac{d^d}{dx^d} e^{-x^2}$$

Classical Results

■ Each $H_d(X)$ is hyperbolic with d distinct real roots.

Hermite Polynomials

Definition

The Hermite polynomials are the polynomials defined by

$$H_d(X) = (-1)^d e^{x^2} \frac{d^d}{dx^d} e^{-x^2}$$

Classical Results

- Each $H_d(X)$ is hyperbolic with d distinct real roots.
- The Hermite polynomials have the exponential generating function

$$\sum_{l=0}^{\infty} H_d(X) \cdot \frac{Y^d}{d!} := e^{2XY - Y^2}.$$

Proving the Hyperbolicity of Jensen Polynomials

Theorem (Griffin, Ono, Rolen, Zagier)

Suppose a(n) has appropriate growth. For each degree $d \ge 1$ we have,

$$\lim_{n\to+\infty}\widehat{J}_a^{d,n}(X)=H_d(X).$$

Thus, for each d, all but (possibly) finitely many $J_a^{d,n}(X)$ are hyperbolic.

Proving the Hyperbolicity of Jensen Polynomials

Theorem (Griffin, Ono, Rolen, Zagier)

Suppose a(n) has appropriate growth. For each degree $d \ge 1$ we have,

$$\lim_{n\to+\infty}\widehat{J}_a^{d,n}(X)=H_d(X).$$

Thus, for each d, all but (possibly) finitely many $J_a^{d,n}(X)$ are hyperbolic.

Proof Idea

The general idea of the proof is to show that for large fixed n,

$$\sum_{d=0}^{\infty} \widehat{J}_a^{d,n}(X) \cdot \frac{Y^d}{d!} \approx e^{2XY - Y^2}.$$

Bounding the Hyperbolicity of Jensen Polynomials

Notation

Let N(f;d) denote the minimal integer such that if $n \ge N(f,d)$ then $J_f^{d,n}(z)$ is hyperbolic.

Bounding the Hyperbolicity of Jensen Polynomials

Notation

Let N(f;d) denote the minimal integer such that if $n \ge N(f,d)$ then $J_f^{d,n}(z)$ is hyperbolic.

Main Theorem (Kim and Lee)

Let f be a transcendental real entire function of order $\rho < 2$ and $\mathcal{Z}(f) \subset \mathbb{S}$. Then, for every $c > \rho$ we have $N(f;d) = O(d^{c/2})$ as $d \to \infty$.

Bounding the Hyperbolicity of Jensen Polynomials

Notation

Let N(f; d) denote the minimal integer such that if $n \ge N(f, d)$ then $J_f^{d,n}(z)$ is hyperbolic.

Main Theorem (Kim and Lee)

Let f be a transcendental real entire function of order $\rho < 2$ and $\mathcal{Z}(f) \subset \mathbb{S}$. Then, for every $c > \rho$ we have $N(f; d) = O(d^{c/2})$ as $d \to \infty$.

Consequence

Then,
$$\rho(\Xi) = 1 \implies N(\Xi; d) = O(d^{1/2+\varepsilon})$$
 as $d \to \infty!$

Notation

Let

- $\blacksquare \mathbb{S} := \{ z \in \mathbb{C} : |\operatorname{Im}| \leq \frac{1}{2} \}$
- \blacksquare $\mathcal{Z}(f)$ be the zero set of the function f

Theorem (Kim)

Let f be a nonconstant real entire function with $0 < \rho(f) \le 2$ and of minimal type. If there is a positive real number A such that $\mathcal{Z}(f) \subset \{z \in \mathbb{C} : |\operatorname{Im} z| \le A\}$, then for any positive constant B there is a positive integer n_1 such that $f^{(n)}(z)$ has only real zeros in $|\operatorname{Re} z| \le B n^{\frac{1}{\rho}}$ for all $n \ge n_1$.

Theorem (Kim)

Let f be a nonconstant real entire function with $0 < \rho(f) \le 2$ and of minimal type. If there is a positive real number A such that $\mathcal{Z}(f) \subset \{z \in \mathbb{C} : |\operatorname{Im} z| \le A\}$, then for any positive constant B there is a positive integer n_1 such that $f^{(n)}(z)$ has only real zeros in $|\operatorname{Re} z| \le Bn^{\frac{1}{\rho}}$ for all $n \ge n_1$.

Theorem 2 (Kim and Lee)

Let f be a transcendental real entire function of order $\rho(f) < 2$ and $\mathcal{Z}(f) \subset \mathbb{S}$. Then for every $c > \rho(f)$ there is a positive integer n_1 such that for all $n \geq n_1$

$$\mathcal{Z}(f^{(n)}) \subset \{z \in \mathbb{S} : |\operatorname{Re} z| \ge n^{1/c}\} \cup \mathbb{R}.$$

Theorem 3 of (Kim and Lee)

Let P and Q be real polynomials, $\delta>0$, $Z(P)\subset S(\delta)$, Q is hyperbolic, and $deg(Q)\leq \delta^{-2}$. Then the polynomial

$$P(D)Q = \sum_{k=0}^{degP} \frac{P^{(k)}(0)}{k!} Q^{(k)},$$

is hyperbolic.

Theorem 3 of (Kim and Lee)

Let P and Q be real polynomials, $\delta>0$, $Z(P)\subset S(\delta)$, Q is hyperbolic, and $deg(Q)\leq \delta^{-2}$. Then the polynomial

$$P(D)Q = \sum_{k=0}^{degP} \frac{P^{(k)}(0)}{k!} Q^{(k)},$$

is hyperbolic.

Corollary (Kim and Lee)

Let P be a real polynomial with $\mathcal{Z}(P) \subset S(\delta)$ for $\delta > 0$. Then, $J_{P}^{d,0}(z)$ is hyperbolic for $d \leq \delta^{-2}$.

■ By Theorem 2, there exists an $n_1 \in \mathbb{N}$ such that if $n \geq n_1$ then

$$\mathcal{Z}(f^{(n)}) \subset \{z \in \mathbb{S} : |\operatorname{Re} z| \ge n^{1/c}\} \cup \mathbb{R}.$$

■ By Theorem 2, there exists an $n_1 \in \mathbb{N}$ such that if $n \geq n_1$ then

$$\mathcal{Z}(f^{(n)}) \subset \{z \in \mathbb{S} : |\operatorname{Re} z| \ge n^{1/c}\} \cup \mathbb{R}.$$

■ Let $d, n \in \mathbb{N}$ such that

$$n \ge \max \left\{ n_1, \left(\frac{d}{4}\right)^{c/2} \right\},$$

and choose $\delta = \frac{1}{2n^{1/c}} > 0$.

■ By Theorem 2, there exists an $n_1 \in \mathbb{N}$ such that if $n \geq n_1$ then

$$\mathcal{Z}(f^{(n)}) \subset \{z \in \mathbb{S} : |\operatorname{Re} z| \geq n^{1/c}\} \cup \mathbb{R}.$$

■ Let $d, n \in \mathbb{N}$ such that

$$n \ge \max \left\{ n_1, \left(\frac{d}{4}\right)^{c/2} \right\},$$

and choose
$$\delta = \frac{1}{2n^{1/c}} > 0$$
.

Then,
$$d \le 4n^{2/c} = (2n^{1/c})^2 = \left(\frac{1}{2n^{1/c}}\right)^{-2} = \delta^{-2}$$
.

■ Let $P_1, P_2, ...$ be real polynomials such that $\mathcal{Z}(P_k) \subset \mathcal{Z}(f) \cup \mathbb{R}$ for all k and $P_k \to f$ uniformly on compact subsets of \mathbb{C} (these exist from partial products of the Weierstrass factorization of f).

- Let $P_1, P_2, ...$ be real polynomials such that $\mathcal{Z}(P_k) \subset \mathcal{Z}(f) \cup \mathbb{R}$ for all k and $P_k \to f$ uniformly on compact subsets of \mathbb{C} (these exist from partial products of the Weierstrass factorization of f).
- lacksquare This implies $J_{P_k}^{d,0}(z) o J_{f^{(n)}}^{d,0}(z) = J_f^{d,n}(z)$.

- Let $P_1, P_2, ...$ be real polynomials such that $\mathcal{Z}(P_k) \subset \mathcal{Z}(f) \cup \mathbb{R}$ for all k and $P_k \to f$ uniformly on compact subsets of \mathbb{C} (these exist from partial products of the Weierstrass factorization of f).
- This implies $J_{P_k}^{d,0}(z) \to J_{f^{(n)}}^{d,0}(z) = J_f^{d,n}(z)$.
- Since $d \le \delta^{-2}$, $\mathbb{R} \subset S(\delta)$, and if $z \in \mathcal{Z}(f)$ with $|\operatorname{Re} z| \ge n^{1/c}$ then $|\operatorname{Im} z| \cdot 1 \le \frac{1}{2} \cdot \frac{|z|}{n^{1/c}} = \frac{1}{2n^{1/c}}|z| = \delta|z|$, the corollary applies.

- Let $P_1, P_2, ...$ be real polynomials such that $\mathcal{Z}(P_k) \subset \mathcal{Z}(f) \cup \mathbb{R}$ for all k and $P_k \to f$ uniformly on compact subsets of \mathbb{C} (these exist from partial products of the Weierstrass factorization of f).
- This implies $J_{P_k}^{d,0}(z) \to J_{f^{(n)}}^{d,0}(z) = J_f^{d,n}(z)$.
- Since $d \le \delta^{-2}$, $\mathbb{R} \subset S(\delta)$, and if $z \in \mathcal{Z}(f)$ with $|\operatorname{Re} z| \ge n^{1/c}$ then $|\operatorname{Im} z| \cdot 1 \le \frac{1}{2} \cdot \frac{|z|}{n^{1/c}} = \frac{1}{2n^{1/c}}|z| = \delta|z|$, the corollary applies.
- The corollary gives that $J_{P_{\iota}}^{d,0}(z)$ is hyperbolic for all k.

- Let $P_1, P_2, ...$ be real polynomials such that $\mathcal{Z}(P_k) \subset \mathcal{Z}(f) \cup \mathbb{R}$ for all k and $P_k \to f$ uniformly on compact subsets of \mathbb{C} (these exist from partial products of the Weierstrass factorization of f).
- This implies $J_{P_k}^{d,0}(z) o J_{f^{(n)}}^{d,0}(z) = J_f^{d,n}(z)$.
- Since $d \le \delta^{-2}$, $\mathbb{R} \subset S(\delta)$, and if $z \in \mathcal{Z}(f)$ with $|\operatorname{Re} z| \ge n^{1/c}$ then $|\operatorname{Im} z| \cdot 1 \le \frac{1}{2} \cdot \frac{|z|}{n^{1/c}} = \frac{1}{2n^{1/c}}|z| = \delta|z|$, the corollary applies.
- The corollary gives that $J_{P_k}^{d,0}(z)$ is hyperbolic for all k.
- This implies $J_{f}^{d,n}$ is hyperbolic with

$$N(f;d) \leq \left\lceil \max \left\{ n_1, \left(\frac{d}{4}\right)^{c/2} \right\} \right\rceil,$$

or, equivalently, $N(f;d)=O(d^{c/2})$ as $d \to \infty$.

Dirichlet Characters

Definition

A Dirichlet character modulo k is a function $\chi \colon \mathbb{N} \to \mathbb{C}$ satisfying

- (i) $\chi(1) = 1$;
- (ii) $\chi(n_1) = \chi(n_2)$ if $n_1 \equiv n_2 \pmod{k}$;
- (iii) $\chi(n_1n_2) = \chi(n_1)\chi(n_2)$;
- (iv) $\chi(n) = 0$ if and only if (n, k) > 1.

Dirichlet Characters

Example

There are four Dirichlet characters modulo 5, namely

n (mod 5)	1	2	3	4	0
$\chi_0(n)$	1	1	1	1	0
$\chi_1(n)$	1	i	-i	-1	0
$\chi_2(n)$	1	-1	-1	1	0
$\chi_3(n)$	1	- <i>i</i>	i	-1	0

The Dirichlet character χ_0 is called the **principal character**.

Dirichlet L-Functions

Definition

Let χ be any character modulo k. The **Dirichlet series for** χ is

$$L(s,\chi)=\sum_{n\geq 1}\frac{\chi(n)}{n^s},$$

for any real s > 1.

Dirichlet L-Functions

Definition

Let χ be any character modulo k. The **Dirichlet series for** χ is

$$L(s,\chi)=\sum_{n\geq 1}\frac{\chi(n)}{n^s},$$

for any real s > 1.

Remark

Dirichlet *L*-functions act similarly to ζ , including having completed form and analytic continuation to $\mathbb C$ as well as nontrivial zeros contained in the strip $0<\operatorname{Im} z<1$.

Can we generalize the methods of Kim and Lee?

Definition (Wagner)

For a Dirichlet *L*-function $L(\chi,s)$, let $\Lambda(\chi,s)$ denote its completed form. We formally define

$$\Xi(\chi,z) := \begin{cases} \left(-z^2 - \frac{1}{4}\right) \Lambda\left(\frac{1}{2} - iz,\chi\right) & \text{if } \chi \text{ is principal} \\ \Lambda\left(\frac{1}{2} - iz,\chi\right) & \text{otherwise} \end{cases}.$$

Can we generalize the methods of Kim and Lee?

Definition (Wagner)

For a Dirichlet *L*-function $L(\chi, s)$, let $\Lambda(\chi, s)$ denote its completed form. We formally define

$$\Xi(\chi,z) := \begin{cases} \left(-z^2 - \frac{1}{4}\right) \Lambda\left(\frac{1}{2} - iz,\chi\right) & \text{if } \chi \text{ is principal} \\ \Lambda\left(\frac{1}{2} - iz,\chi\right) & \text{otherwise} \end{cases}.$$

Remark

We can note that $\Xi(\chi,z)$ is transcendental real entire, with $\mathcal{Z}(\Xi(\chi,z))\subset\mathbb{S}$.

Can we generalize the methods of Kim and Lee?

Definition (Wagner)

For a Dirichlet *L*-function $L(\chi, s)$, let $\Lambda(\chi, s)$ denote its completed form. We formally define

$$\Xi(\chi,z) := \begin{cases} \left(-z^2 - \frac{1}{4}\right) \Lambda\left(\frac{1}{2} - iz,\chi\right) & \text{if } \chi \text{ is principal} \\ \Lambda\left(\frac{1}{2} - iz,\chi\right) & \text{otherwise} \end{cases}.$$

Remark

We can note that $\Xi(\chi,z)$ is transcendental real entire, with $\mathcal{Z}(\Xi(\chi,z))\subset\mathbb{S}$.

Thus, we can apply the Main Theorem of Kim and Lee if we verify $\rho(\Xi(\chi,z)) < 2$.

Order of $\Xi(\chi,z)$

Theorem

Let $L(s,\chi)$ be a Dirichlet L-function. Then, $\rho(\Xi(\chi,z))=1$.

Order of $\Xi(\chi, z)$

Theorem

Let $L(s,\chi)$ be a Dirichlet L-function. Then, $\rho(\Xi(\chi,z))=1$.

Remark

We present a proof of this fact which does not exist in the literature to the author's knowledge.

Order of $\Xi(\chi, z)$

Theorem

Let $L(s,\chi)$ be a Dirichlet L-function. Then, $\rho(\Xi(\chi,z))=1$.

Remark

We present a proof of this fact which does not exist in the literature to the author's knowledge.

Additionally, we will use the following implications

$$\rho(\Xi(\chi,z)) = 1 \iff \rho(L(\chi,s)) = 1 \iff \rho((s-1) \cdot L(\chi,s)) = 1.$$

Proof that $\Xi(\chi,z)$ has order 1

• We first consider the Laurent series for $L(s, \chi)$ at s = 1,

$$L(s,\chi) = \frac{\delta_{\chi}}{s-1} + \sum_{n=0}^{\infty} \frac{(-1)^n \gamma_n(\chi)}{n!} (s-1)^n,$$

and multiplying by s-1 yields

$$(s-1)L(s,\chi) = \delta_{\chi} + \sum_{n=0}^{\infty} \frac{(-1)^n \gamma_n(\chi)}{n!} (s-1)^{n+1}.$$

• We first consider the Laurent series for $L(s, \chi)$ at s = 1,

$$L(s,\chi) = \frac{\delta_{\chi}}{s-1} + \sum_{n=0}^{\infty} \frac{(-1)^n \gamma_n(\chi)}{n!} (s-1)^n,$$

and multiplying by s-1 yields

$$(s-1)L(s,\chi) = \delta_{\chi} + \sum_{n=0}^{\infty} \frac{(-1)^n \gamma_n(\chi)}{n!} (s-1)^{n+1}.$$

 We can express the order in terms of the coefficients of the Laurent series as

$$\rho = \limsup_{n \to \infty} \frac{n \log n}{\log \left(\left| \frac{(-1)^n \gamma_n(\chi)}{n!} \right|^{-1} \right)} = \limsup_{n \to \infty} \frac{n \log n}{-\log \left(\frac{|\gamma_n(\chi)|}{n!} \right)}.$$

Theorem (Saad Eddin)

Let χ be a primitive Dirichlet character modulo q. Then, for every $1 \leq q \leq \frac{\pi}{2} \cdot \frac{\mathrm{e}^{(n+1)/2}}{n+1}$, we have

$$\frac{|\gamma_n(\chi)|}{n!} \leq q^{-\frac{1}{2}}C(n,q)\min\left(1+D(n,q),\frac{\pi^2}{6}\right),$$

where

$$C(n,q) \sim \exp \left\{-n \log \theta(n,q) + \theta(n,q) \log \theta(n,q) + \theta(n,q)O(1)\right\},$$

$$\theta(n,q) \sim \frac{n}{\log n},$$
 $D(n,q) = 2^{-\theta(n,q)-1}.$

We evaluate the following quantities.

First,

$$\log(\theta(n,q)) \sim \log n - \log\log n$$

We evaluate the following quantities.

First,

$$\log(\theta(n,q)) \sim \log n - \log\log n$$

Next,

$$\log C(n,q) \sim \log \exp \left\{-n \log \theta(n,q) + \theta(n,q) \log \theta(n,q) + \theta(n,q)\right\}$$
$$\sim -n \log n + n \log \log n + \frac{n}{\log n} (\log n - \log \log n) + \frac{n}{\log n}$$
$$= -n \log n + O(n \log \log n).$$

■ We return to our equation for the order of $(s-1)L(\chi,s)$

$$\rho = \limsup_{n \to \infty} \frac{n \log n}{-\log \left(\frac{|\gamma_n(\chi)|}{n!}\right)}$$

$$\leq \limsup_{n \to \infty} \frac{n \log n}{-\log \left(q^{-\frac{1}{2}}C(n,q)\min\left(1 + D(n,q),\frac{\pi^2}{6}\right)\right)}$$

• We return to our equation for the order of $(s-1)L(\chi,s)$

$$\rho = \limsup_{n \to \infty} \frac{n \log n}{-\log \left(\frac{|\gamma_n(\chi)|}{n!}\right)}$$

$$\leq \limsup_{n \to \infty} \frac{n \log n}{-\log \left(q^{-\frac{1}{2}}C(n,q)\min\left(1 + D(n,q),\frac{\pi^2}{6}\right)\right)}$$

$$= \limsup_{n \to \infty} \frac{n \log n}{-\log \left(C(n,q)\right) - \log \left(q^{-\frac{1}{2}}\min\left(1 + D(n,q),\frac{\pi^2}{6}\right)\right)}$$

• We return to our equation for the order of $(s-1)L(\chi,s)$

$$\rho = \limsup_{n \to \infty} \frac{n \log n}{-\log \left(\frac{|\gamma_n(\chi)|}{n!}\right)}$$

$$\leq \limsup_{n \to \infty} \frac{n \log n}{-\log \left(q^{-\frac{1}{2}}C(n,q)\min\left(1+D(n,q),\frac{\pi^2}{6}\right)\right)}$$

$$= \limsup_{n \to \infty} \frac{n \log n}{-\log \left(C(n,q)\right) - \log \left(q^{-\frac{1}{2}}\min\left(1+D(n,q),\frac{\pi^2}{6}\right)\right)}$$

$$= \limsup_{n \to \infty} \frac{n \log n}{-(-n \log n + O(n \log \log n)) - O(1)}$$

• We return to our equation for the order of $(s-1)L(\chi,s)$

$$\begin{split} \rho &= \limsup_{n \to \infty} \frac{n \log n}{-\log \left(\frac{|\gamma_n(\chi)|}{n!}\right)} \\ &\leq \limsup_{n \to \infty} \frac{n \log n}{-\log \left(q^{-\frac{1}{2}}C(n,q)\min\left(1+D(n,q),\frac{\pi^2}{6}\right)\right)} \\ &= \limsup_{n \to \infty} \frac{n \log n}{-\log \left(C(n,q)\right) - \log \left(q^{-\frac{1}{2}}\min\left(1+D(n,q),\frac{\pi^2}{6}\right)\right)} \\ &= \limsup_{n \to \infty} \frac{n \log n}{-\left(-n \log n + O(n \log \log n)\right) - O(1)} \\ &\rho \leq 1. \end{split}$$

■ By contradiction assume $\rho(L(\chi, s)) < 1$.

- By contradiction assume $\rho(L(\chi, s)) < 1$.
- Then $L(\chi, s)$ has genus 0 by Hadamard's Theorem.

- By contradiction assume $\rho(L(\chi, s)) < 1$.
- Then $L(\chi, s)$ has genus 0 by Hadamard's Theorem.
- lacktriangle This implies the zeros of ζ are "sparse."

- By contradiction assume $\rho(L(\chi, s)) < 1$.
- Then $L(\chi, s)$ has genus 0 by Hadamard's Theorem.
- This implies the zeros of ⟨ are "sparse."
- We have the following recent result giving a bound on the number of zeros of Dirichlet *L*-functions.

Theorem (Bennett, Martin, O'Bryant, Rechnitzer)

Suppose that the Dirichlet character χ has conductor q>1, and that $T\geq 5/7$. Then, the number of zeros of $L(\chi,s)$ and height at most T, $N(T,\chi)$, is bounded by

$$\left|N(T,\chi)-\left(\frac{T}{\pi}\log\frac{qT}{2\pi e}-\frac{\chi(-1)}{4}\right)\right|\leq 0.22737\ell+2\log(1+\ell)-0.5,$$

where
$$\ell = \log \frac{q(T+2)}{2\pi} > 1.567$$
.

UPADPAERAER E 990

■ The number of zeros satisfies $N(T, \chi) \sim T \log T$.

- The number of zeros satisfies $N(T, \chi) \sim T \log T$.
- This is too many zeros for a genus 0 function so we reach a contradiction.

- The number of zeros satisfies $N(T, \chi) \sim T \log T$.
- This is too many zeros for a genus 0 function so we reach a contradiction.
- Since $1 \le \rho(\Xi(\chi, z)) \le 1$, we have that $\rho(\Xi(\chi, z)) = 1$. ■

Generalizing to Dirichlet L-functions

Theorem

Let χ be a principal character modulo q, let $L(\chi,s)$ be a Dirichlet L-function, and let $\Xi(\chi,z)$ be defined as above. Then, $N(\Xi(\chi,z);d)=O(d^{\frac{1}{2}+\varepsilon})$ as $d\to\infty$.

Proof.

The function $\Xi(\chi,z)$ is a transcendental real entire function with order $\rho=1<2$ and $\mathcal{Z}(\Xi(\chi,z))\subset\mathbb{S}$. Choose $c=1+\varepsilon_0>\rho$ for arbitrarily small $\varepsilon_0>0$. Then, by the Main Theorem of Kim and Lee, we have that $N(\Xi(\chi,z);d)=O(d^{(1+\varepsilon_0)/2})=O(d^{\frac{1}{2}+\varepsilon})$ as $d\to\infty$.

L-functions

Definition

A Dirichlet series is a series of the form

$$L(s) = \sum_{n=1}^{\infty} \frac{a_n}{n^s}$$

where $s \in \mathbb{C}$ and $\{a_n\}_{n \geq 1}$ is a sequence of complex numbers.

L-functions

Definition

A Dirichlet series is a series of the form

$$L(s) = \sum_{n=1}^{\infty} \frac{a_n}{n^s}$$

where $s \in \mathbb{C}$ and $\{a_n\}_{n \geq 1}$ is a sequence of complex numbers.

Definition

If a Dirichlet series L(s) admits an meromorphic continuation, it is called an L-series, and its continuation is called an L-function.

Definition

A Dirichlet series L(s) is **good** if the following hold

I L(s) has a completed form, $\Lambda(s)$ which has an integral representation.

Definition

A Dirichlet series L(s) is **good** if the following hold

- **1** L(s) has a completed form, $\Lambda(s)$ which has an integral representation.
- 2 The function f(t) defined in the integral representation satisfies $f\left(\frac{1}{Nt}\right) = \epsilon N^{\frac{k}{2}} t^k f(t)$, where $\epsilon \in \{\pm 1\}$.

Definition

A Dirichlet series L(s) is **good** if the following hold

- **1** L(s) has a completed form, $\Lambda(s)$ which has an integral representation.
- **2** The function f(t) defined in the integral representation satisfies $f\left(\frac{1}{Nt}\right) = \epsilon N^{\frac{k}{2}} t^k f(t)$, where $\epsilon \in \{\pm 1\}$.
- **3** The coefficients of $\Lambda(s)$ are real.

Definition

A Dirichlet series L(s) is **good** if the following hold

- **1** L(s) has a completed form, $\Lambda(s)$ which has an integral representation.
- 2 The function f(t) defined in the integral representation satisfies $f\left(\frac{1}{Nt}\right) = \epsilon N^{\frac{k}{2}} t^k f(t)$, where $\epsilon \in \{\pm 1\}$.
- **3** The coefficients of $\Lambda(s)$ are real.

Definition

For a good Dirichlet L(s) series with completed form $\Lambda(s)$, we define

$$\Xi_L(z) := \begin{cases} (-z^2 - \frac{k^2}{4}) \Lambda(\frac{k}{2} - iz) & \text{if } \Lambda(s) \text{ has a pole at } s = k \\ \Lambda(\frac{k}{2} - iz) & \text{otherwise.} \end{cases}$$

Definition

For a good Dirichlet L(s) series with completed form $\Lambda(s)$, we define

$$\Xi_L(z) := \begin{cases} (-z^2 - \frac{k^2}{4}) \Lambda(\frac{k}{2} - iz) & \text{if } \Lambda(s) \text{ has a pole at } s = k \\ \Lambda(\frac{k}{2} - iz) & \text{otherwise.} \end{cases}$$

Remarks

■ The function $\Xi_L(z)$ is transcendental, real, and entire.

Definition

For a good Dirichlet L(s) series with completed form $\Lambda(s)$, we define

$$\Xi_L(z) := \begin{cases} (-z^2 - \frac{k^2}{4}) \Lambda(\frac{k}{2} - iz) & \text{if } \Lambda(s) \text{ has a pole at } s = k \\ \Lambda(\frac{k}{2} - iz) & \text{otherwise.} \end{cases}$$

Remarks

- The function $\Xi_L(z)$ is transcendental, real, and entire.
- We have $\rho(\Xi_L) < 2$ by definition.

Definition

For a good Dirichlet L(s) series with completed form $\Lambda(s)$, we define

$$\Xi_L(z) := \begin{cases} (-z^2 - \frac{k^2}{4}) \Lambda(\frac{k}{2} - iz) & \text{if } \Lambda(s) \text{ has a pole at } s = k \\ \Lambda(\frac{k}{2} - iz) & \text{otherwise.} \end{cases}$$

Remarks

- The function $\Xi_L(z)$ is transcendental, real, and entire.
- We have $\rho(\Xi_L)$ < 2 by definition.
- The zero set satisfies $\mathcal{Z}(\Xi_L) \subset \{z \in \mathbb{C} : |\operatorname{Im} z| \leq k/2\} := \mathbb{S}_k$.

Theorem.

Let L(s) be a good Dirichlet series. Then, $N(\Xi_L; d) = O(d)$ for $\varepsilon > 0$ as $d \to \infty$.

Theorem

Let L(s) be a good Dirichlet series. Then, $N(\Xi_L; d) = O(d)$ for $\varepsilon > 0$ as $d \to \infty$.

Proof

We modify the methods of Kim and Lee.

Theorem

Let L(s) be a good Dirichlet series. Then, $N(\Xi_L; d) = O(d)$ for $\varepsilon > 0$ as $d \to \infty$.

Proof

- We modify the methods of Kim and Lee.
- We want an analog to their second theorem, which is only stated for functions satisfying $\mathcal{Z}(f) \subset \mathbb{S}$.

Theorem (Kim)

Let f be a nonconstant real entire function with $0 < \rho(f) \le 2$ and of minimal type. If there is a positive real number A such that $\mathcal{Z}(f) \subset \{z \in \mathbb{C} : |\operatorname{Im} z| \le A\}$, then for any positive constant B there is a positive integer n_1 such that $f^{(n)}(z)$ has only real zeros in $|\operatorname{Re} z| \le Bn^{\frac{1}{\rho}}$ for all $n \ge n_1$.

Theorem (Kim)

Let f be a nonconstant real entire function with $0 < \rho(f) \le 2$ and of minimal type. If there is a positive real number A such that $\mathcal{Z}(f) \subset \{z \in \mathbb{C} : |\operatorname{Im} z| \le A\}$, then for any positive constant B there is a positive integer n_1 such that $f^{(n)}(z)$ has only real zeros in $|\operatorname{Re} z| \le Bn^{\frac{1}{\rho}}$ for all $n \ge n_1$.

Theorem 2 (Kim and Lee)

Let f be a transcendental real entire function of order $\rho(f) < 2$ and $\mathcal{Z}(f) \subset \mathbb{S}$. Then for every $c > \rho(f)$ there is a positive integer n_1 such that for all $n \geq n_1$

$$\mathcal{Z}(f^{(n)}) \subset \{z \in \mathbb{S} : |\operatorname{Re} z| \geq n^{1/c}\} \cup \mathbb{R}.$$

Theorem

Let f be a transcendental real entire function of order $\rho(f) < 2$ and $\mathcal{Z}(f) \subset \mathbb{S}_k$ for some $k \in \mathbb{R}$. Then for every $c > \rho(f)$ there is a positive integer n_1 such that for all $n \geq n_1$

$$\mathcal{Z}(f^{(n)}) \subset \{z \in \mathbb{S}_k : |\operatorname{Re} z| \ge n^{1/c}\} \cup \mathbb{R}.$$

Proof.

We apply the theorem of Kim, choosing A=k/2 (rather than 1/2) and choose B=1. Then, taking into account the lack of minimal type condition, for any $c>\rho$ Kim's theorem implies there exists an $n_1\in\mathbb{N}$ such that $f^{(n)}(z)$ has only real zeros in $|\operatorname{Re} z|< n^{1/c}$ when $n>n_1$. This implies the theorem.

■ By the previous theorem, there exists an $n_1 \in \mathbb{N}$ such that if $n \geq n_1$ then

$$\mathcal{Z}(f^{(n)}) \subset \{z \in \mathbb{S} : |\operatorname{Re} z| \geq n^{1/c}\} \cup \mathbb{R}.$$

■ By the previous theorem, there exists an $n_1 \in \mathbb{N}$ such that if $n \geq n_1$ then

$$\mathcal{Z}(f^{(n)}) \subset \{z \in \mathbb{S} : |\operatorname{Re} z| \geq n^{1/c}\} \cup \mathbb{R}.$$

■ Let $d, n \in \mathbb{N}$ such that

$$n \ge \max \left\{ n_1, \left(\frac{k^2}{4} \cdot d \right)^{c/2} \right\},$$

and choose $\delta = \frac{k}{2n^{1/c}} > 0$.

■ By the previous theorem, there exists an $n_1 \in \mathbb{N}$ such that if $n \geq n_1$ then

$$\mathcal{Z}(f^{(n)}) \subset \{z \in \mathbb{S} : |\operatorname{Re} z| \geq n^{1/c}\} \cup \mathbb{R}.$$

■ Let $d, n \in \mathbb{N}$ such that

$$n \ge \max \left\{ n_1, \left(\frac{k^2}{4} \cdot d \right)^{c/2}
ight\},$$

and choose
$$\delta = \frac{k}{2\pi^{1/c}} > 0$$
.

Then,
$$d \leq \frac{4}{k^2} n^{2/c} = (\frac{2}{k} n^{1/c})^2 = \left(\frac{k}{2n^{1/c}}\right)^{-2} = \delta^{-2}$$
.

Let $P_1, P_2, ...$ be real polynomials such that $\mathcal{Z}(P_k) \subset \mathcal{Z}(f) \cup \mathbb{R}$ for all k and $P_k \to f$ uniformly on compact subsets of \mathbb{C} (these exist from partial products of the Weierstrass factorization of f).

- Let $P_1, P_2, ...$ be real polynomials such that $\mathcal{Z}(P_k) \subset \mathcal{Z}(f) \cup \mathbb{R}$ for all k and $P_k \to f$ uniformly on compact subsets of \mathbb{C} (these exist from partial products of the Weierstrass factorization of f).
- This implies $J_{P_k}^{d,0}(z) o J_{f^{(n)}}^{d,0}(z) = J_f^{d,n}(z)$.

- Let $P_1, P_2, ...$ be real polynomials such that $\mathcal{Z}(P_k) \subset \mathcal{Z}(f) \cup \mathbb{R}$ for all k and $P_k \to f$ uniformly on compact subsets of \mathbb{C} (these exist from partial products of the Weierstrass factorization of f).
- This implies $J_{P_k}^{d,0}(z) \to J_{f^{(n)}}^{d,0}(z) = J_f^{d,n}(z)$.
- Since $d \le \delta^{-2}$, $\mathbb{R} \subset S(\delta)$, and if $z \in \mathcal{Z}(f)$ with $|\operatorname{Re} z| \ge n^{1/c}$ then $|\operatorname{Im} z| \cdot 1 \le \frac{k}{2} \cdot \frac{|z|}{n^{1/c}} = \frac{k}{2n^{1/c}}|z| = \delta|z|$, the corollary of Kim and Lee applies.

- Let $P_1, P_2, ...$ be real polynomials such that $\mathcal{Z}(P_k) \subset \mathcal{Z}(f) \cup \mathbb{R}$ for all k and $P_k \to f$ uniformly on compact subsets of \mathbb{C} (these exist from partial products of the Weierstrass factorization of f).
- This implies $J_{P_k}^{d,0}(z) \to J_{f^{(n)}}^{d,0}(z) = J_f^{d,n}(z)$.
- Since $d \leq \delta^{-2}$, $\mathbb{R} \subset S(\delta)$, and if $z \in \mathcal{Z}(f)$ with $|\operatorname{Re} z| \geq n^{1/c}$ then $|\operatorname{Im} z| \cdot 1 \leq \frac{k}{2} \cdot \frac{|z|}{n^{1/c}} = \frac{k}{2n^{1/c}}|z| = \delta|z|$, the corollary of Kim and Lee applies.
- The corollary gives that $J_{P_k}^{d,0}(z)$ is hyperbolic for all k.

- Let $P_1, P_2, ...$ be real polynomials such that $\mathcal{Z}(P_k) \subset \mathcal{Z}(f) \cup \mathbb{R}$ for all k and $P_k \to f$ uniformly on compact subsets of \mathbb{C} (these exist from partial products of the Weierstrass factorization of f).
- This implies $J_{P_k}^{d,0}(z) \rightarrow J_{f^{(n)}}^{d,0}(z) = J_f^{d,n}(z)$.
- Since $d \le \delta^{-2}$, $\mathbb{R} \subset S(\delta)$, and if $z \in \mathcal{Z}(f)$ with $|\operatorname{Re} z| \ge n^{1/c}$ then $|\operatorname{Im} z| \cdot 1 \le \frac{k}{2} \cdot \frac{|z|}{n^{1/c}} = \frac{k}{2n^{1/c}}|z| = \delta|z|$, the corollary of Kim and Lee applies.
- The corollary gives that $J_{P_k}^{d,0}(z)$ is hyperbolic for all k.
- This implies $J_f^{d,n}(z)$ is hyperbolic with

$$N(f;d) \leq \left\lceil \max \left\{ n_1, \left(\frac{k^2}{4} \cdot d \right)^{c/2} \right\} \right\rceil,$$

or equivalently $N(f;d)=O(d^{c/2})$ as $d\to\infty$

■ In the case of $\Xi_L(z)$ choose $c=2>\rho(\Xi_L)$.

- In the case of $\Xi_L(z)$ choose $c = 2 > \rho(\Xi_L)$.
- Then $J_{\Xi_i}^{d,n}(z)$ is hyperbolic with

$$N(\Xi_L; d) \leq \left\lceil \max \left\{ n_1, \left(\frac{k^2 d}{4} \right)^{2/2} \right\} \right\rceil = \left\lceil \max \left\{ n_1, \frac{k^2}{4} \cdot d \right\} \right\rceil,$$

- In the case of $\Xi_L(z)$ choose $c=2>\rho(\Xi_L)$.
- Then $J_{\equiv_i}^{d,n}(z)$ is hyperbolic with

$$N(\Xi_L; d) \leq \left\lceil \max \left\{ n_1, \left(\frac{k^2 d}{4} \right)^{2/2} \right\} \right\rceil = \left\lceil \max \left\{ n_1, \frac{k^2}{4} \cdot d \right\} \right\rceil,$$

or equivalently $N(\Xi_L; d) = O(d)$ as $d \to \infty$.

Background

■ Pólya showed that RH is equivalent to the hyperbolicity of all of the $J_{\gamma}^{d,n}(z)$ where γ are Taylor coefficients of Ξ .

Background

- Pólya showed that RH is equivalent to the hyperbolicity of all of the $J_{\gamma}^{d,n}(z)$ where γ are Taylor coefficients of Ξ .
- In this way, results of Griffin, Ono, Rolen, and Zagier provide evidence for RH and results of Kim and Lee provide further evidence.

Background

- Pólya showed that RH is equivalent to the hyperbolicity of all of the $J_{\gamma}^{d,n}(z)$ where γ are Taylor coefficients of Ξ .
- In this way, results of Griffin, Ono, Rolen, and Zagier provide evidence for RH and results of Kim and Lee provide further evidence.
- Similarly, generalization of Wagner provides evidence for the Generalized Riemann Hypothesis (GRH).

Background

- Pólya showed that RH is equivalent to the hyperbolicity of all of the $J_{\gamma}^{d,n}(z)$ where γ are Taylor coefficients of Ξ .
- In this way, results of Griffin, Ono, Rolen, and Zagier provide evidence for RH and results of Kim and Lee provide further evidence.
- Similarly, generalization of Wagner provides evidence for the Generalized Riemann Hypothesis (GRH).

Remark

The bound on $N(\Xi_L; d)$ provides further evidence for GRH.

Can We Generalize to $\mathcal{SL} - \mathcal{P}$?

■ Methods of Kim and Lee use $\mathcal{L} - \mathcal{P}$ properties and work for functions in $\mathcal{L} - \mathcal{P}$.

Can We Generalize to SL - P?

- Methods of Kim and Lee use $\mathcal{L} \mathcal{P}$ properties and work for functions in $\mathcal{L} \mathcal{P}$.
- For any good *L*-Function, $\Xi_I(z) \in \mathcal{SL} \mathcal{P}$ (Wagner).

Can We Generalize to $\mathcal{SL} - \mathcal{P}$?

- Methods of Kim and Lee use $\mathcal{L} \mathcal{P}$ properties and work for functions in $\mathcal{L} \mathcal{P}$.
- For any good *L*-Function, $\Xi_L(z) \in \mathcal{SL} \mathcal{P}$ (Wagner).
- Generalization of the methods of Kim and Lee to all of $\mathcal{SL} \mathcal{P}$ (or at least $\mathcal{SL} \mathcal{P}I$) seems natural.

Problems With Generalizing to $\mathcal{SL} - \mathcal{P}$

■ For any $\phi \in \mathcal{SL} - \mathcal{P}$, the zeros of ϕ can be arbitrarily large.

Problems With Generalizing to $\mathcal{SL} - \mathcal{P}$

- For any $\phi \in \mathcal{SL} \mathcal{P}$, the zeros of ϕ can be arbitrarily large.
- For $\phi \in \mathcal{SL} \mathcal{P}$, we only have $\phi \leq 2$.

Problems With Generalizing to $\mathcal{SL} - \mathcal{P}$

- For any $\phi \in \mathcal{SL} \mathcal{P}$, the zeros of ϕ can be arbitrarily large.
- For $\phi \in \mathcal{SL} \mathcal{P}$, we only have $\phi \leq 2$.
- We can't use partial products of Weierstrass factorization as sequence of polynomials converging to ϕ as they are not contained in $S(\delta)$ for any $\delta > 0$.

Philosophy of $\mathcal{SL} - \mathcal{P}$

For $\phi_{\gamma} \in \mathcal{SL} - \mathcal{P}$, the Taylor coefficients γ_k should act more and more like Taylor coefficients of a function in $\mathcal{L} - \mathcal{P}$ as k grows.

Philosophy of $\mathcal{SL} - \mathcal{P}$

For $\phi_{\gamma} \in \mathcal{SL} - \mathcal{P}$, the Taylor coefficients γ_k should act more and more like Taylor coefficients of a function in $\mathcal{L} - \mathcal{P}$ as k grows.

■ i.e. at some point (for some large enough shift n), functions in $\mathcal{SL} - \mathcal{P}$ act like $\mathcal{L} - \mathcal{P}$.

Philosophy of $\mathcal{SL} - \mathcal{P}$

For $\phi_{\gamma} \in \mathcal{SL} - \mathcal{P}$, the Taylor coefficients γ_k should act more and more like Taylor coefficients of a function in $\mathcal{L} - \mathcal{P}$ as k grows.

- i.e. at some point (for some large enough shift n), functions in $\mathcal{SL} \mathcal{P}$ act like $\mathcal{L} \mathcal{P}$.
- There should exist an analog of Theorem 2 of Kim and Lee for functions in $\mathcal{L} \mathcal{P}$.

Philosophy of $\mathcal{SL} - \mathcal{P}$

For $\phi_{\gamma} \in \mathcal{SL} - \mathcal{P}$, the Taylor coefficients γ_k should act more and more like Taylor coefficients of a function in $\mathcal{L} - \mathcal{P}$ as k grows.

- i.e. at some point (for some large enough shift n), functions in $\mathcal{SL} \mathcal{P}$ act like $\mathcal{L} \mathcal{P}$.
- There should exist an analog of Theorem 2 of Kim and Lee for functions in $\mathcal{L} \mathcal{P}$.
- There may exist some $n_{\delta} \in \mathbb{N}$ such that if $n \geq n_{\delta}$ then $\phi(z)$ hyperbolic for $|\operatorname{Re} z| \leq n^{1/c}$.

Theorem (Wagner)

For $\phi_{\gamma} \in \mathcal{SL} - \mathcal{P}$, the sequence of polynomials

$$P_{n,k}(z) := J_{\gamma}^{k,n}(z/k) = \sum_{j=0}^{k} {k \choose j} \gamma_{n+j}(z/k)^{j}$$

converge to $\phi_{\gamma}^{(n)}$ uniformly on compact subsets of \mathbb{C} as $k \to \infty$.

Theorem (Wagner)

For $\phi_{\gamma} \in \mathcal{SL} - \mathcal{P}$, the sequence of polynomials

$$P_{n,k}(z) := J_{\gamma}^{k,n}(z/k) = \sum_{j=0}^{k} {k \choose j} \gamma_{n+j}(z/k)^{j}$$

converge to $\phi_{\gamma}^{(n)}$ uniformly on compact subsets of $\mathbb C$ as $k \to \infty$.

Theorem

If z_0 is a root of $P_{k,n}(z)$ then there exists an $N \in \mathbb{N}$ such that if $n \geq N$ then

$$|z_0| \leq k^2 \cdot \frac{\gamma_{n+k-1}}{\gamma_{n+k}}$$
.

Remark

We need a bound on the size of the zeros of our polynomials that is independent of k, n to make the proof work.

Remark

We need a bound on the size of the zeros of our polynomials that is independent of k, n to make the proof work.

Definition

When $k \leq d$, we keep the same choice of $P_{k,n} = J_{\gamma}^{k,n}(z/k)$ but for k > d we define

$$\widehat{P}_{d,k,n}(z) := \sum_{j=0}^{d} {k \choose j} \gamma_{n+j} (z/k)^{j}.$$

Remark

We need a bound on the size of the zeros of our polynomials that is independent of k, n to make the proof work.

Definition

When $k \leq d$, we keep the same choice of $P_{k,n} = J_{\gamma}^{k,n}(z/k)$ but for k > d we define

$$\widehat{P}_{d,k,n}(z) := \sum_{i=0}^d \binom{k}{j} \gamma_{n+j} (z/k)^j.$$

For $k \leq d$, $P_{k,n}(z) = \widehat{P}_{d,k,n}(z)$ and when k > d they have the same first d Taylor coefficients, so $J_P^{d,0}(z) = J_{\widehat{P}}^{d,0}(z)$ for all k.

Theorem

If z_0 is a root of $\widehat{P}_{d,k,n}(z)$ then there exists an $N \in \mathbb{N}$ such that if n > N then

$$|z_0| \leq d \cdot \frac{k}{k-d+1} \cdot \frac{\gamma_{n+d-1}}{\gamma_{n+d}}.$$

Theorem

If z_0 is a root of $\widehat{P}_{d,k,n}(z)$ then there exists an $N \in \mathbb{N}$ such that if n > N then

$$|z_0| \leq d \cdot \frac{k}{k-d+1} \cdot \frac{\gamma_{n+d-1}}{\gamma_{n+d}}.$$

Idea

If $k \leq d$ then $k^2 \leq d^2$ and if $k \geq d$ then $d \cdot d \geq d \cdot \frac{k}{k-d+1}$. Our bound on the roots of $\widehat{P}_{d,k,n}(z)$ should look like d^2M where M accounts for the γ terms.

Theorem

If z_0 is a root of $\widehat{P}_{d,k,n}(z)$ then there exists an $N \in \mathbb{N}$ such that if n > N then

$$|z_0| \leq d \cdot \frac{k}{k-d+1} \cdot \frac{\gamma_{n+d-1}}{\gamma_{n+d}}.$$

Idea

If $k \leq d$ then $k^2 \leq d^2$ and if $k \geq d$ then $d \cdot d \geq d \cdot \frac{k}{k-d+1}$. Our bound on the roots of $\widehat{P}_{d,k,n}(z)$ should look like d^2M where M accounts for the γ terms.

Question

Do \widehat{P} satisfy $\mathcal{Z}(\widehat{P}) \subset S(\delta)$ for some $\delta > 0$ and large k and n?

Roots of $\widehat{P}_{d,k,n}(z)$ with d=100, $k=\overline{10^9}$, $n=\overline{10^9}$

Theorem

If z_0 is a root of $\widehat{P}_{d,k,n}(p(i);z)$ and $n \geq 26$ then $|z_0| \leq d^2$.

Theorem

If z_0 is a root of $\widehat{P}_{d,k,n}(p(i);z)$ and $n \geq 26$ then $|z_0| \leq d^2$.

Proof.

By the previous general theorem and using that p(i) is increasing

$$|z_0| \le \begin{cases} k^2 \cdot \frac{p(n+k-1)}{p(n+k)} & k \le d \\ d \cdot \frac{k}{k-d+1} \cdot \frac{p(n+d-1)}{p(n+d)} & k > d \end{cases}$$
$$\le \begin{cases} d^2 \cdot 1 & k \le d \\ d \cdot d \cdot 1 & k > d \end{cases} = d^2 \, \forall k.$$

■ We have $\phi_p \in \mathcal{SL} - \mathcal{P}I$ (Griffin, Ono, Rolen, Zagier) so $\rho(\phi_p) \leq 1$.

- We have $\phi_p \in \mathcal{SL} \mathcal{P}I$ (Griffin, Ono, Rolen, Zagier) so $\rho(\phi_p) \leq 1$.
- Using previous theorem and assuming there exists some $n_{\delta} \in \mathbb{N}$ as described we would choose n, d such that

$$n \ge \max\{n_\delta, 26, d^{5c/2}\}$$

and
$$\delta(d) = d^2/n^{1/c}$$
.

- We have $\phi_p \in \mathcal{SL} \mathcal{P}I$ (Griffin, Ono, Rolen, Zagier) so $\rho(\phi_p) \leq 1$.
- Using previous theorem and assuming there exists some $n_{\delta} \in \mathbb{N}$ as described we would choose n, d such that

$$n \ge \max\{n_\delta, 26, d^{5c/2}\}$$

and
$$\delta(d) = d^2/n^{1/c}$$
.

■ Then $d \le \delta(d)^{-2}$ and $\mathcal{Z}(\widehat{P}) \subset S(\delta(d))$ so Corollary of Kim and Lee would apply.

- We have $\phi_p \in \mathcal{SL} \mathcal{P}I$ (Griffin, Ono, Rolen, Zagier) so $\rho(\phi_p) \leq 1$.
- Using previous theorem and assuming there exists some $n_{\delta} \in \mathbb{N}$ as described we would choose n, d such that

$$n \ge \max\{n_\delta, 26, d^{5c/2}\}$$

and
$$\delta(d) = d^2/n^{1/c}$$
.

- Then $d \le \delta(d)^{-2}$ and $\mathcal{Z}(\widehat{P}) \subset S(\delta(d))$ so Corollary of Kim and Lee would apply.
- Then $N(\phi_p; d) \leq \lceil \max\{n_\delta, 26, d^{5c/2}\} \rceil$ which would imply $N(\phi_p; d) = O(d^{5 \cdot 1 + \varepsilon/2}) = O(d^{5/2 + \varepsilon})$ as $d \to \infty$.

Results

■ For Dirichlet *L*-Functions, $N(\Xi(\chi, z); d) = O(d^{1/2+\varepsilon})$ as $d \to \infty$.

Results

- For Dirichlet *L*-Functions, $N(\Xi(\chi, z); d) = O(d^{1/2+\varepsilon})$ as $d \to \infty$.
- For good *L*-functions, $N(\Xi_L; d) = O(d)$ as $d \to \infty$.

Results

- For Dirichlet *L*-Functions, $N(\Xi(\chi, z); d) = O(d^{1/2+\varepsilon})$ as $d \to \infty$.
- For good *L*-functions, $N(\Xi_L; d) = O(d)$ as $d \to \infty$.

Ongoing Work

■ Finding n_{δ} (i.e. how long it takes for functions in $\mathcal{SL} - \mathcal{P}$ to act like $\mathcal{L} - \mathcal{P}$)

Results

- For Dirichlet *L*-Functions, $N(\Xi(\chi, z); d) = O(d^{1/2+\varepsilon})$ as $d \to \infty$.
- For good *L*-functions, $N(\Xi_L; d) = O(d)$ as $d \to \infty$.

Ongoing Work

- Finding n_{δ} (i.e. how long it takes for functions in $\mathcal{SL} \mathcal{P}$ to act like $\mathcal{L} \mathcal{P}$)
- Understanding geometric pattern in roots of \widehat{P} .

Results

- For Dirichlet *L*-Functions, $N(\Xi(\chi, z); d) = O(d^{1/2+\varepsilon})$ as $d \to \infty$.
- For good *L*-functions, $N(\Xi_L; d) = O(d)$ as $d \to \infty$.

Ongoing Work

- Finding n_{δ} (i.e. how long it takes for functions in $\mathcal{SL} \mathcal{P}$ to act like $\mathcal{L} \mathcal{P}$)
- Understanding geometric pattern in roots of \widehat{P} .
- Proving that $N(\phi_p; d) = O(d^{5/2+\varepsilon})$.

Results

- For Dirichlet *L*-Functions, $N(\Xi(\chi, z); d) = O(d^{1/2+\varepsilon})$ as $d \to \infty$.
- For good *L*-functions, $N(\Xi_L; d) = O(d)$ as $d \to \infty$.

Ongoing Work

- Finding n_{δ} (i.e. how long it takes for functions in $\mathcal{SL} \mathcal{P}$ to act like $\mathcal{L} \mathcal{P}$)
- Understanding geometric pattern in roots of \widehat{P} .
- Proving that $N(\phi_p; d) = O(d^{5/2+\varepsilon})$.
- Final goal of generalizing the bound on $N(\phi; d)$ to all of $\mathcal{SL} \mathcal{P}I$ and potentially all of $\mathcal{SL} \mathcal{P}$.

Thank You!