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Integer Partitions

Definition

An integer partition of n is a sequence of positive integers
λ1 ≥ λ2 ≥ ... ≥ λk such that

λ1 + ...+ λk = n.

The number of partitions of n is denoted by p(n).

Example

The partitions of 4 are

4, 3 + 1, 2 + 2, 2 + 1 + 1, 1 + 1 + 1 + 1.

Thus, p(4) = 5.
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Jensen Polynomials

Definition

Let a : N → R be be an arithmetic function. The Jensen
polynomial of degree d and shift n associated to a is

Jd ,na (z) :=
d∑

j=0

(
d

j

)
a(n + j)z j .

Remark

With Taylor coefficients of an entire function f as our terms we
obtain

Jd ,nf (z) = Jd ,0
f (n)

(z) =
d∑

j=1

(
d

j

)
f (n+j)(0)z j .
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Jensen Polynomials

Definition

A polynomial f (x) ∈ R[x ] is hyperbolic if all of its roots are real.

Remark

The hyperbolicity of Jensen polynomials can encode information
about a sequence.
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Jensen Polynomials

Example

The roots of J2,na (z) = an+2z
2 + 2an+1z + an are

z =
−an+1 ±

√
(an+1)2 − an+2an
an+2

.

Jd ,na (z) is hyperbolic if and only if (an+1)
2 ≥ an+2an.
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Jensen Polynomials Over p(n)

Theorem (Nicolas (1978), Desalvo and Pak (2013))

If n ≥ 26 then J2,np (z) is hyperbolic.

A Look Ahead

Griffin, Ono, Rolen, and Zagier (2019) showed for every degree d ,

there exists an N(d) such that if n ≥ N(d) then Jd ,np (z) is
hyperbolic.
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The Riemann Zeta and Xi Functions

Definition

For s ∈ C with σ > 1, we define the Riemann zeta function

ζ(s) :=
∑∞

n=1
1
ns .

Definition

The Riemann Xi-function is the entire function

Ξ(z) :=
1

2

(
−z2 − 1

4

)
π

iz
2
− 1

4Γ

(
− iz

2
+

1

4

)
ζ

(
−iz +

1

2

)
.

Remark

Riemann Hypothesis is true ⇐⇒ all zeros of Ξ are real.
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Function Order

Definition

The order of a function f is given by

ρ(f ) = lim sup
r→∞

log logM(f ; r)

log r
,

where M(f ; r) is the maximum modulus function.

Theorem

The function Ξ has order 1.
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The Laguerre-Pólya Class

Definition

A real entire function ψ(z) belongs to the Laguerre-Pólya class, if

ψ(z) = Czmebx−ax2
∞∏
k=1

(
1 +

z

zk

)
e
− z

zk ,

where b,C , zk ∈ R, m ∈ Z≥0, a ≥ 0 and
∑

k≥1 x
−2
k <∞.

If for ψ(z) ∈ L − P, either ψ(z) or ψ(−z) is

ψ(z) = Czmeσx
∞∏
k=1

(
1 +

z

zk

)
,

with C ∈ R, m ∈ Z≥0, σ ≥ 0, zk > 0, and
∑

k≥1 z
−1
k <∞ then

we say ψ is type I and we denote ψ ∈ L − PI .
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Multiplier Sequences

Definition

Let Γ be a linear operator defined by Γγ(x
k) = γkx

k .

A sequence of real numbers {γk}k≥0 is a multiplier sequence of
type I if Γγ(p(x)) has only real zeros whenever the real polynomial
p(x) has only real zeros.

A sequence of real numbers {γk}k≥0 is a multiplier sequence of
type II if Γγ(p(x)) has only real zeros whenever p(x) has only real
zeros with the same sign.
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Multiplier Sequences, L − P , and Jensen Polynomials

Theorem (Pólya)

If {γk}k≥0 is a sequence of nonnegative real numbers, then the
following are equivalent:

1 {γk}k≥0 is a multiplier sequence.

2 For each d, the polynomial Jd ,0γ (z) has all real non-positive

roots. Equivalently, Jd ,0γ (z) ∈ L − PI .

3 The formal power series ϕ(z) =
∑∞

k=0
γk
k! zk ∈ L − PI .
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The Shifted Laguerre-Pólya Class

Definition

A real entire function ϕ(x) belongs to the shifted Laguerre-Pólya
class of degree d , denoted SL − P(d), if it’s the uniform limit of

polynomials {ϕk}k≥0 such that ϕ
(deg(ϕn)−d)
n (x) has all real roots

for n ≥ N(d) ∈ N.

We say ϕ ∈ SL − P(d) is of type I and write ϕ ∈ SL − PI (d) if

all of the roots of ϕ
(deg()ϕn−d)
n (x) have the same sign.
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The Shifted Laguerre Pólya Class

Definition

A real entire function ϕγ(x) belongs to the shifted
Laguerre-Pólya class, denoted by SL−P, if ϕγ ∈ SL−P(d) for
every d ∈ N.

If a real entire function ϕ ∈ SL − P satisfies

ϕ
(deg(ϕn)−d)
n (x) has all real roots of the same sign for any

n ≥ N(d) then it is type I and ϕγ ∈ SL − PI .

ϕγ ∈ SL − PI and γk ≥ 0 for large enough k then we say
ϕγ ∈ SL − P+
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Properties of SL − P

1 SL − P(d) ⊂ SL − P(d − 1) for all d ∈ N.

2 If ϕ ∈ L − P then ϕ ∈ SL − P(d) for all d ≤ deg ϕ.

If ϕ ∈ L − P and transcendental then ϕ ∈ SL − P(d) for any
nonnegative integer d .
In this case we can take N(d) = 0 and consider L − P as the
shift 0 case of SL − P.

3 Functions in SL − P have order at most 2.

4 Functions in SL − PI have order at most 1.
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Shifted Multiplier Sequences

“Definition” (Wagner)

A real sequence {γk}k≥0 is an order d multiplier sequence of
type I if, for each n ∈ N, {γk} is a multiplier sequence when
deg(p) ≥ d .

A real sequence {γk}k≥0 is a shifted multiplier sequence of
type I (type II respectively) if for each d ∈ N, there exists an
N(d) such that {γk+n}k≥0 is an order d multiplier sequence of
type I (type II respectively) for all n ≥ N(d).



Roots of Polynomials, Integer Partitions, and L-Functions

Shifted Analog of Pólya’s Theorem

Theorem (Wagner)

If {γk}k≥0 is a sequence of nonnegative real numbers, then the
following are equivalent:

1 {γk}k≥0 is a shifted multiplier sequence of type I.

2 For each d ∈ N, there exists an N2(d) such that Jd ,nγ (x) has
all real non-positive roots for all n ≥ N2(d).

3 The formal power series ϕ(x) =
∑∞

k=0
γk
k! z

k ∈ SL − PI .
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First Motivating Results

Theorem (Griffin, Ono, Rolen, Zagier)

Let a(n) be a real sequence with appropriate growth, then for each

d ≥ 1, all but (possibly) finitely many Jd ,na (X ) are hyperbolic.
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Appropriate Growth

Definition

A real sequence a(n) has appropriate growth if for each j we have

a(n + j) = a(n)E (n)je−δ(n)2(j2/4+o(1)),

as n → +∞ for some real numbers E (n) > 0 and δ(n) → 0.

Remark

A sequence a(n) with an asymptotic formula has appropriate
growth if

log

(
a(n + j)

a(n)

)
= A(n)j − B(n)j2 + o(δ(n)2),

where A(n) > 0 and 0 < B(n) → 0.
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Renormalized Jensen Polynomials

Definition

If a(n) has appropriate growth, then the renormalized Jensen
polynomials are defined by,

Ĵd ,na (X ) :=
2d

δ(n)d · a(n)
· Jd ,na

(
δ(n)X − 1

E (n)

)
.
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Hermite Polynomials

Definition

The Hermite polynomials are the polynomials defined by

Hd(X ) = (−1)dex
2 dd

dxd
e−x2

Classical Results

Each Hd(X ) is hyperbolic with d distinct real roots.

The Hermite polynomials have the exponential generating
function

∞∑
d=0

Hd(X ) · Y
d

d!
:= e2XY−Y 2

.
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Proving the Hyperbolicity of Jensen Polynomials

Theorem (Griffin, Ono, Rolen, Zagier)

Suppose a(n) has appropriate growth. For each degree d ≥ 1 we
have,

lim
n→+∞

Ĵd ,na (X ) = Hd(X ).

Thus, for each d, all but (possibly) finitely many Jd ,na (X ) are
hyperbolic.

Proof Idea

The general idea of the proof is to show that for large fixed n,

∞∑
d=0

Ĵd ,na (X ) · Y
d

d!
≈ e2XY−Y 2

.
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Bounding the Hyperbolicity of Jensen Polynomials

Notation

Let N(f ; d) denote the minimal integer such that if n ≥ N(f , d)

then Jd ,nf (z) is hyperbolic.

Main Theorem (Kim and Lee)

Let f be a transcendental real entire function of order ρ < 2 and
Z(f ) ⊂ S. Then, for every c > ρ we have N(f ; d) = O(dc/2) as
d → ∞.

Consequence

Then, ρ(Ξ) = 1 =⇒ N(Ξ; d) = O(d1/2+ε) as d → ∞!
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Proof of Main Theorem of Kim and Lee

Notation

Let

S := {z ∈ C : | Im | ≤ 1
2}

Z(f ) be the zero set of the function f

S(δ) := {z ∈ C : | Im z | ≤ δ|z |}
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Proof of Main Theorem of Kim and Lee

Theorem (Kim)

Let f be a nonconstant real entire function with 0 < ρ(f ) ≤ 2 and
of minimal type. If there is a positive real number A such that
Z(f ) ⊂ {z ∈ C : | Im z | ≤ A}, then for any positive constant B
there is a positive integer n1 such that f (n)(z) has only real zeros

in |Re z | ≤ Bn
1
ρ for all n ≥ n1.

Theorem 2 (Kim and Lee)

Let f be a transcendental real entire function of order ρ(f ) < 2
and Z(f ) ⊂ S. Then for every c > ρ(f ) there is a positive integer
n1 such that for all n ≥ n1

Z(f (n)) ⊂ {z ∈ S : |Re z | ≥ n1/c} ∪ R.
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Proof of Main Theorem of Kim and Lee

Theorem 3 of (Kim and Lee)

Let P and Q be real polynomials, δ > 0, Z (P) ⊂ S(δ), Q is
hyperbolic, and deg(Q) ≤ δ−2. Then the polynomial

P(D)Q =

degP∑
k=0

P(k)(0)

k!
Q(k),

is hyperbolic.

Corollary (Kim and Lee)

Let P be a real polynomial with Z(P) ⊂ S(δ) for δ > 0. Then,

Jd ,0P (z) is hyperbolic for d ≤ δ−2.
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Proof of Main Theorem of Kim and Lee

By Theorem 2, there exists an n1 ∈ N such that if n ≥ n1 then

Z(f (n)) ⊂ {z ∈ S : |Re z | ≥ n1/c} ∪ R.

Let d , n ∈ N such that

n ≥ max

{
n1,

(
d

4

)c/2
}
,

and choose δ = 1
2n1/c

> 0.

Then, d ≤ 4n2/c = (2n1/c)2 =
(

1
2n1/c

)−2
= δ−2.
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Proof of Main Theorem of Kim and Lee

Let P1,P2, ... be real polynomials such that
Z(Pk) ⊂ Z(f ) ∪ R for all k and Pk → f uniformly on
compact subsets of C (these exist from partial products of the
Weierstrass factorization of f ).

This implies Jd ,0Pk
(z) → Jd ,0

f (n)
(z) = Jd ,nf (z).

Since d ≤ δ−2, R ⊂ S(δ), and if z ∈ Z(f ) with |Re z | ≥ n1/c

then | Im z | · 1 ≤ 1
2 · |z|

n1/c
= 1

2n1/c
|z | = δ|z |, the corollary

applies.

The corollary gives that Jd ,0Pk
(z) is hyperbolic for all k .

This implies Jd ,nf is hyperbolic with

N(f ; d) ≤

⌈
max

{
n1,

(
d

4

)c/2
}⌉

,

or, equivalently, N(f ; d) = O(dc/2) as d → ∞.■
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Dirichlet Characters

Definition

A Dirichlet character modulo k is a function χ : N → C
satisfying

(i) χ(1) = 1;

(ii) χ(n1) = χ(n2) if n1 ≡ n2 (mod k);

(iii) χ(n1n2) = χ(n1)χ(n2);

(iv) χ(n) = 0 if and only if (n, k) > 1.
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Dirichlet Characters

Example

There are four Dirichlet characters modulo 5, namely

n (mod 5) 1 2 3 4 0

χ0(n) 1 1 1 1 0

χ1(n) 1 i −i −1 0

χ2(n) 1 −1 −1 1 0

χ3(n) 1 −i i −1 0

The Dirichlet character χ0 is called the principal character.
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Dirichlet L-Functions

Definition

Let χ be any character modulo k. The Dirichlet series for χ is

L(s, χ) =
∑
n≥1

χ(n)

ns
,

for any real s > 1.

Remark

Dirichlet L-functions act similarly to ζ, including having completed
form and analytic continuation to C as well as nontrivial zeros
contained in the strip 0 < Im z < 1.
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Can we generalize the methods of Kim and Lee?

Definition (Wagner)

For a Dirichlet L-function L(χ, s), let Λ(χ, s) denote its completed
form. We formally define

Ξ(χ, z) :=

{(
−z2 − 1

4

)
Λ
(
1
2 − iz , χ

)
if χ is principal

Λ
(
1
2 − iz , χ

)
otherwise

.

Remark

We can note that Ξ(χ, z) is transcendental real entire, with
Z(Ξ(χ, z)) ⊂ S.
Thus, we can apply the Main Theorem of Kim and Lee if we verify
ρ(Ξ(χ, z)) < 2.
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Order of Ξ(χ, z)

Theorem

Let L(s, χ) be a Dirichlet L-function. Then, ρ(Ξ(χ, z)) = 1.

Remark

We present a proof of this fact which does not exist in the
literature to the author’s knowledge.

Additionally, we will use the following implications

ρ(Ξ(χ, z)) = 1 ⇐⇒ ρ(L(χ, s)) = 1 ⇐⇒ ρ((s − 1) · L(χ, s)) = 1.
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Proof that Ξ(χ, z) has order 1

We first consider the Laurent series for L(s, χ) at s = 1,

L(s, χ) =
δχ

s − 1
+

∞∑
n=0

(−1)nγn(χ)

n!
(s − 1)n,

and multiplying by s − 1 yields

(s − 1)L(s, χ) = δχ +
∞∑
n=0

(−1)nγn(χ)

n!
(s − 1)n+1.

We can express the order in terms of the coefficients of the
Laurent series as

ρ = lim sup
n→∞

n log n

log

(∣∣∣ (−1)nγn(χ)
n!

∣∣∣−1
) = lim sup

n→∞

n log n

− log
(
|γn(χ)|

n!

) .
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Proof that Ξ(χ, z) has order 1

Theorem (Saad Eddin)

Let χ be a primitive Dirichlet character modulo q. Then, for every

1 ≤ q ≤ π
2 · e(n+1)/2

n+1 , we have

|γn(χ)|
n!

≤ q−
1
2C (n, q)min

(
1 + D(n, q),

π2

6

)
,

where

C (n, q) ∼ exp {−n log θ(n, q) + θ(n, q) log θ(n, q) + θ(n, q)O(1)} ,

θ(n, q) ∼ n

log n
, D(n, q) = 2−θ(n,q)−1.
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Proof that Ξ(χ, z) has order 1

We evaluate the following quantities.

First,
log(θ(n, q)) ∼ log n − log log n

Next,

logC (n, q) ∼ log exp {−n log θ(n, q) + θ(n, q) log θ(n, q) + θ(n, q)}

∼ −n log n + n log log n +
n

log n
(log n − log log n) +

n

log n

= −n log n + O(n log log n).
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Proof that Ξ(χ, z) has order 1

We return to our equation for the order of (s − 1)L(χ, s)

ρ = lim sup
n→∞

n log n

− log
(
|γn(χ)|

n!

)
≤ lim sup

n→∞

n log n

− log
(
q−

1
2C (n, q)min

(
1 + D(n, q), π

2

6

))

= lim sup
n→∞

n log n

− log (C (n, q))− log
(
q−

1
2 min

(
1 + D(n, q), π

2

6

))
= lim sup

n→∞

n log n

− (−n log n + O(n log log n))− O(1)

ρ ≤ 1.
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Proof that Ξ(χ, z) has order 1

By contradiction assume ρ(L(χ, s)) < 1.

Then L(χ, s) has genus 0 by Hadamard’s Theorem.

This implies the zeros of ζ are “sparse.”

We have the following recent result giving a bound on the
number of zeros of Dirichlet L-functions.

Theorem (Bennett, Martin, O’Bryant, Rechnitzer)

Suppose that the Dirichlet character χ has conductor q > 1, and
that T ≥ 5/7. Then, the number of zeros of L(χ, s) and height at
most T , N(T , χ), is bounded by∣∣∣∣N(T , χ)−

(
T

π
log

qT

2πe
− χ(−1)

4

)∣∣∣∣ ≤ 0.22737ℓ+2 log(1+ℓ)−0.5,

where ℓ = log q(T+2)
2π > 1.567.
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Proof that Ξ(χ, z) has order 1

The number of zeros satisfies N(T , χ) ∼ T logT .

This is too many zeros for a genus 0 function so we reach a
contradiction.

Since 1 ≤ ρ(Ξ(χ, z)) ≤ 1, we have that ρ(Ξ(χ, z)) = 1. ■
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Generalizing to Dirichlet L-functions

Theorem

Let χ be a principal character modulo q, let L(χ, s) be a Dirichlet
L-function, and let Ξ(χ, z) be defined as above. Then,

N(Ξ(χ, z); d) = O(d
1
2
+ε) as d → ∞.

Proof.

The function Ξ(χ, z) is a transcendental real entire function with
order ρ = 1 < 2 and Z(Ξ(χ, z)) ⊂ S. Choose c = 1 + ε0 > ρ for
arbitrarily small ε0 > 0. Then, by the Main Theorem of Kim and

Lee, we have that N(Ξ(χ, z); d) = O(d (1+ε0)/2) = O(d
1
2
+ε) as

d → ∞. ■
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L-functions

Definition

A Dirichlet series is a series of the form

L(s) =
∞∑
n=1

an
ns

where s ∈ C and {an}n≥1 is a sequence of complex numbers.

Definition

If a Dirichlet series L(s) admits an meromorphic continuation, it is
called an L-series, and its continuation is called an L-function.
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Good L-Functions

Definition

A Dirichlet series L(s) is good if the following hold

1 L(s) has a completed form, Λ(s) which has an integral
representation.

2 The function f (t) defined in the integral representation

satisfies f
(

1
Nt

)
= ϵN

k
2 tk f (t), where ϵ ∈ {±1}.

3 The coefficients of Λ(s) are real.

4 ρ(Λ(s)) < 2.
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Generalizing to L-functions

Definition

For a good Dirichlet L(s) series with completed form Λ(s), we
define

ΞL(z) :=

{
(−z2 − k2

4 )Λ(
k
2 − iz) if Λ(s) has a pole at s = k

Λ(k2 − iz) otherwise.

Remarks

The function ΞL(z) is transcendental, real, and entire.

We have ρ(ΞL) < 2 by definition.

The zero set satisfies Z(ΞL) ⊂ {z ∈ C : | Im z | ≤ k/2} := Sk .
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Generalizing to L-Functions

Theorem

Let L(s) be a good Dirichlet series. Then, N(ΞL; d) = O(d) for
ε > 0 as d → ∞.

Proof

We modify the methods of Kim and Lee.

We want an analog to their second theorem, which is only
stated for functions satisfying Z(f ) ⊂ S.
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Proof of the L-Function Bound Continued

Theorem (Kim)

Let f be a nonconstant real entire function with 0 < ρ(f ) ≤ 2 and
of minimal type. If there is a positive real number A such that
Z(f ) ⊂ {z ∈ C : | Im z | ≤ A}, then for any positive constant B
there is a positive integer n1 such that f (n)(z) has only real zeros

in |Re z | ≤ Bn
1
ρ for all n ≥ n1.

Theorem 2 (Kim and Lee)

Let f be a transcendental real entire function of order ρ(f ) < 2
and Z(f ) ⊂ S. Then for every c > ρ(f ) there is a positive integer
n1 such that for all n ≥ n1

Z(f (n)) ⊂ {z ∈ S : |Re z | ≥ n1/c} ∪ R.
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Proof of the L-Function Bound Continued

Theorem

Let f be a transcendental real entire function of order ρ(f ) < 2
and Z(f ) ⊂ Sk for some k ∈ R. Then for every c > ρ(f ) there is a
positive integer n1 such that for all n ≥ n1

Z(f (n)) ⊂ {z ∈ Sk : |Re z | ≥ n1/c} ∪ R.

Proof.

We apply the theorem of Kim, choosing A = k/2 (rather than
1/2) and choose B = 1. Then, taking into account the lack of
minimal type condition, for any c > ρ Kim’s theorem implies there
exists an n1 ∈ N such that f (n)(z) has only real zeros in
|Re z | ≤ n1/c when n ≥ n1. This implies the theorem. ■
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Proof of the L-Function Bound Continued

By the previous theorem, there exists an n1 ∈ N such that if
n ≥ n1 then

Z(f (n)) ⊂ {z ∈ S : |Re z | ≥ n1/c} ∪ R.

Let d , n ∈ N such that

n ≥ max

{
n1,

(
k2

4
· d

)c/2
}
,

and choose δ = k
2n1/c

> 0.

Then, d ≤ 4
k2 n

2/c = ( 2k n
1/c)2 =

(
k

2n1/c

)−2
= δ−2.
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Proof of the L-Function Bound Continued

Let P1,P2, ... be real polynomials such that
Z(Pk) ⊂ Z(f ) ∪ R for all k and Pk → f uniformly on
compact subsets of C (these exist from partial products of the
Weierstrass factorization of f ).

This implies Jd ,0Pk
(z) → Jd ,0

f (n)
(z) = Jd ,nf (z).

Since d ≤ δ−2, R ⊂ S(δ), and if z ∈ Z(f ) with |Re z | ≥ n1/c

then | Im z | · 1 ≤ k
2 · |z|

n1/c
= k

2n1/c
|z | = δ|z |, the corollary of

Kim and Lee applies.

The corollary gives that Jd ,0Pk
(z) is hyperbolic for all k .

This implies Jd ,nf (z) is hyperbolic with

N(f ; d) ≤

⌈
max

{
n1,

(
k2

4
· d

)c/2
}⌉

,

or equivalently N(f ; d) = O(dc/2) as d → ∞.
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Proof of the L-Function Bound Continued

In the case of ΞL(z) choose c = 2 > ρ(ΞL).

Then Jd ,nΞL
(z) is hyperbolic with

N(ΞL; d) ≤

⌈
max
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n1,
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k2d

4

)2/2
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=
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or equivalently N(ΞL; d) = O(d) as d → ∞. ■
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Why Do We Care?

Background

Pólya showed that RH is equivalent to the hyperbolicity of all
of the Jd ,nγ (z) where γ are Taylor coefficients of Ξ.

In this way, results of Griffin, Ono, Rolen, and Zagier provide
evidence for RH and results of Kim and Lee provide further
evidence.

Similarly, generalization of Wagner provides evidence for the
Generalized Riemann Hypothesis (GRH).

Remark

The bound on N(ΞL; d) provides further evidence for GRH.
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Can We Generalize to SL − P?

Methods of Kim and Lee use L − P properties and work for
functions in L − P.

For any good L-Function, ΞL(z) ∈ SL − P (Wagner).

Generalization of the methods of Kim and Lee to all of
SL − P (or at least SL − PI ) seems natural.
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Problems With Generalizing to SL − P

For any ϕ ∈ SL − P, the zeros of ϕ can be arbitrarily large.

For ϕ ∈ SL − P, we only have ϕ ≤ 2.

We can’t use partial products of Weierstrass factorization as
sequence of polynomials converging to ϕ as they are not
contained in S(δ) for any δ > 0.
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How Would The Generalization Work?

Philosophy of SL − P

For ϕγ ∈ SL − P, the Taylor coefficients γk should act more and
more like Taylor coefficients of a function in L − P as k grows.

i.e. at some point (for some large enough shift n), functions
in SL − P act like L − P.

There should exist an analog of Theorem 2 of Kim and Lee
for functions in L − P.

There may exist some nδ ∈ N such that if n ≥ nδ then ϕ(z)
hyperbolic for |Re z | ≤ n1/c .
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Results

Theorem (Wagner)

For ϕγ ∈ SL − P, the sequence of polynomials

Pn,k(z) := Jk,nγ (z/k) =
k∑

j=0

(
k

j

)
γn+j(z/k)

j

converge to ϕ
(n)
γ uniformly on compact subsets of C as k → ∞.

Theorem

If z0 is a root of Pk,n(z) then there exists an N ∈ N such that if
n ≥ N then

|z0| ≤ k2 · γn+k−1

γn+k
.
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Results

Remark

We need a bound on the size of the zeros of our polynomials that
is independent of k , n to make the proof work.

Definition

When k ≤ d , we keep the same choice of Pk,n = Jk,nγ (z/k) but for
k > d we define

P̂d ,k,n(z) :=
d∑

j=0

(
k

j

)
γn+j(z/k)

j .

For k ≤ d , Pk,n(z) = P̂d ,k,n(z) and when k > d they have the

same first d Taylor coefficients, so Jd ,0P (z) = Jd ,0
P̂

(z) for all k .
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Results

Theorem

If z0 is a root of P̂d ,k,n(z) then there exists an N ∈ N such that if
n ≥ N then

|z0| ≤ d · k

k − d + 1
· γn+d−1

γn+d
.

Idea

If k ≤ d then k2 ≤ d2 and if k ≥ d then d · d ≥ d · k
k−d+1 . Our

bound on the roots of P̂d ,k,n(z) should look like d2M where M
accounts for the γ terms.

Question

Do P̂ satisfy Z(P̂) ⊂ S(δ) for some δ > 0 and large k and n?
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Roots of P̂d ,k,n(z) with d = 100, k = 109, n = 109
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Partition Case

Theorem

If z0 is a root of P̂d ,k,n(p(i); z) and n ≥ 26 then |z0| ≤ d2.

Proof.

By the previous general theorem and using that p(i) is increasing

|z0| ≤

{
k2 · p(n+k−1)

p(n+k) k ≤ d

d · k
k−d+1 · p(n+d−1)

p(n+d) k > d

≤

{
d2 · 1 k ≤ d

d · d · 1 k > d
= d2 ∀k.

■
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Partition Case

We have ϕp ∈ SL − PI (Griffin, Ono, Rolen, Zagier) so
ρ(ϕp) ≤ 1.

Using previous theorem and assuming there exists some
nδ ∈ N as described we would choose n, d such that

n ≥ max{nδ, 26, d5c/2}

and δ(d) = d2/n1/c .

Then d ≤ δ(d)−2 and Z(P̂) ⊂ S(δ(d)) so Corollary of Kim
and Lee would apply.

Then N(ϕp; d) ≤ ⌈max{nδ, 26, d5c/2}⌉ which would imply
N(ϕp; d) = O(d5·1+ε/2) = O(d5/2+ε) as d → ∞.
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Conclusion

Results

For Dirichlet L-Functions, N(Ξ(χ, z); d) = O(d1/2+ε) as
d → ∞.

For good L-functions, N(ΞL; d) = O(d) as d → ∞.

Ongoing Work

Finding nδ (i.e. how long it takes for functions in SL − P to
act like L − P)

Understanding geometric pattern in roots of P̂.

Proving that N(ϕp; d) = O(d5/2+ε).

Final goal of generalizing the bound on N(ϕ; d) to all of
SL − PI and potentially all of SL − P.
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Thank You!


