Joshua Hunt

April 23 2025

Introduction and Motivations

Partitions

Integer Partitions

Definition

An **integer partition of** *n* is a sequence of positive integers $\lambda_1 \ge \lambda_2 \ge ... \ge \lambda_k$ such that

$$\lambda_1 + \ldots + \lambda_k = n.$$

▲□▶ ▲□▶ ▲三▶ ▲三▶ - 三 - のへで

The number of partitions of *n* is denoted by p(n).

Introduction and Motivations

Partitions

Integer Partitions

Definition

An **integer partition of** *n* is a sequence of positive integers $\lambda_1 \ge \lambda_2 \ge ... \ge \lambda_k$ such that

$$\lambda_1 + \ldots + \lambda_k = n.$$

The number of partitions of n is denoted by p(n).

Example

The partitions of 4 are

```
4, \quad 3+1, \quad 2+2, \quad 2+1+1, \quad 1+1+1+1.
```

Thus, p(4) = 5.

Introduction and Motivations

Partitions

Partition Generating Function

Proposition

The generating function for p(n) has the following product expression

$$P(q):=\sum_{k\geq 0}p(k)q^k=\prod_{n\geq 1}rac{1}{1-q^n}.$$

Introduction and Motivations

Partitions

Partition Generating Function

Proposition

The generating function for p(n) has the following product expression

$$\mathsf{P}(q):=\sum_{k\geq 0}\mathsf{p}(k)q^k=\prod_{n\geq 1}rac{1}{1-q^n}.$$

Proof Sketch.

• p(n) counts the number of integer solutions to the equation $1x_1 + 2x_2 + 3x_3 + ... = n$ with $x_i \ge 0$

Introduction and Motivations

Partitions

Partition Generating Function

Proposition

The generating function for p(n) has the following product expression

$$P(q):=\sum_{k\geq 0}p(k)q^k=\prod_{n\geq 1}\frac{1}{1-q^n}$$

Proof Sketch.

• p(n) counts the number of integer solutions to the equation $1x_1 + 2x_2 + 3x_3 + ... = n$ with $x_i \ge 0$

•
$$\sum_{n\geq 0} p(n)q^n =$$

(1+q+q^2+...)(1+q^2+q^4+...)(1+q^3+q^6+...)....

Introduction and Motivations

Partitions

Partition Generating Function

Proposition

The generating function for p(n) has the following product expression

$$P(q):=\sum_{k\geq 0}p(k)q^k=\prod_{n\geq 1}\frac{1}{1-q^n}$$

Proof Sketch.

• p(n) counts the number of integer solutions to the equation $1x_1 + 2x_2 + 3x_3 + ... = n$ with $x_i \ge 0$

•
$$\sum_{n\geq 0} p(n)q^n =$$

 $(1+q+q^2+...)(1+q^2+q^4+...)(1+q^3+q^6+...)...$
• $\sum_{n\geq 0} p(n)q^n = \left(\frac{1}{1-q}\right) \left(\frac{1}{1-q^2}\right) \left(\frac{1}{1-q^3}\right)... = \prod_{n\geq 1} \frac{1}{1-q^n}$

The Dedekind Eta Function and Half-Integral Weight Modular Forms Introduction and Motivations

ntroduction and Motivations

The Modular Discriminant

The Modular Discriminant

Definition

We define the modular discriminant as

$$\Delta := \frac{\left(E_4^3 - E_6^2\right)}{1728} = q - 24q^2 + 252q^3 + \dots$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

The Dedekind Eta Function and Half-Integral Weight Modular Forms Introduction and Motivations

introduction and wortvations

The Modular Discriminant

The Modular Discriminant

Definition

We define the modular discriminant as

$$\Delta := \frac{\left(E_4^3 - E_6^2\right)}{1728} = q - 24q^2 + 252q^3 + \dots$$

Remark

We proved in class that $\Delta \in S_{12}$ and further $S_{12} = \langle \Delta \rangle$

Another Property of Δ

• It can also be shown with a bit of work that

$$\Delta(au) = q \prod_{n\geq 1} (1-q^n)^{24}$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ □臣 ○のへ⊙

Another Property of Δ

• It can also be shown with a bit of work that

$$\Delta(au) = q \prod_{n\geq 1} (1-q^n)^{24}$$

• This is similar to the generating function for p(n)

$$P(q) = \sum_{k\geq 0} p(k)q^k = \prod_{n\geq 1} \frac{1}{1-q^n}$$

・ロト ・ 目 ・ ・ ヨト ・ ヨ ・ うへつ

Another Property of Δ

• It can also be shown with a bit of work that

$$\Delta(au) = q \prod_{n\geq 1} (1-q^n)^{24}$$

• This is similar to the generating function for p(n)

$$P(q) = \sum_{k\geq 0} p(k)q^k = \prod_{n\geq 1} \frac{1}{1-q^n}$$

Question

Can we learn anything about p(n) from $\Delta(\tau)$ and the theory of modular forms?

Another Property of Δ

• It can also be shown with a bit of work that

$$\Delta(au) = q \prod_{n\geq 1} (1-q^n)^{24}$$

• This is similar to the generating function for p(n)

$$P(q) = \sum_{k\geq 0} p(k)q^k = \prod_{n\geq 1} \frac{1}{1-q^n}$$

Question

Can we learn anything about p(n) from $\Delta(\tau)$ and the theory of modular forms? Yes!

The Dedekind Eta Function and Half-Integral Weight Modular Forms Introduction and Motivations

The Dedekind Eta Function

Defining The Dedekind Eta Function

Definition

The Dedekind Eta Function is defined as

$$\eta(au) \coloneqq q^{rac{1}{24}} \prod_{n \geq 1} (1-q^n),$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

for $\tau \in \mathbb{H}$.

The Dedekind Eta Function and Half-Integral Weight Modular Forms Introduction and Motivations

The Dedekind Eta Function

Defining The Dedekind Eta Function

Definition

The Dedekind Eta Function is defined as

$$\eta(au) \coloneqq q^{rac{1}{24}} \prod_{n \geq 1} (1-q^n),$$

for $\tau \in \mathbb{H}$.

Remark

The function $\eta(\tau)$ satisfies

$$(2\pi)^{12}\eta(\tau)^{24} = \Delta(\tau),$$

$$P(q)=rac{q^{rac{1}{24}}}{\eta(au)}.$$

▲□ > ▲圖 > ▲目 > ▲目 > ▲目 > ● ④ < ⊙

Is η Modular?

• The relationship between η and Δ seems to imply that η might be modular

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ □臣 ○のへ⊙

Is η Modular?

- The relationship between η and Δ seems to imply that η might be modular
- However, usual rules for multiplication of modular forms would imply that η should have weight 12/24=1/2

Is η Modular?

- The relationship between η and Δ seems to imply that η might be modular
- However, usual rules for multiplication of modular forms would imply that η should have weight 12/24=1/2

Question

• Does η transform "nicely" over $SL_2(\mathbb{Z})$?

Is η Modular?

- The relationship between η and Δ seems to imply that η might be modular
- However, usual rules for multiplication of modular forms would imply that η should have weight 12/24=1/2

Question

- Does η transform "nicely" over $SL_2(\mathbb{Z})$?
- What does it mean to be a modular form with half-integral weight?

A Quick Detour

Our initial guess for a transformation of a modular form with weight k/2, k odd, over $\Gamma = SL_2(\mathbb{Z})$ might be of the form

1 10

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

$$f(\gamma \tau) = (c\tau + d)^{\kappa/2} f(\tau),$$

where $\gamma = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$.

A Quick Detour

Our initial guess for a transformation of a modular form with weight k/2, k odd, over $\Gamma = SL_2(\mathbb{Z})$ might be of the form

$$f(\gamma \tau) = (c\tau + d)^{k/2} f(\tau),$$
 where $\gamma = \begin{pmatrix} a & b \\ c & d \end{pmatrix}.$

This does NOT work!

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

Automorphic Factors

Let $f \in M_k$ and define $j(\gamma; \tau) := (c\tau + d)^k$.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Automorphic Factors

Let $f \in M_k$ and define $j(\gamma; \tau) := (c\tau + d)^k$. Then, for $\alpha, \beta \in \Gamma$,

$$\frac{f(\alpha\beta\tau)}{f(\tau)} = \frac{f(\alpha\beta\tau)}{f(\beta\tau)} \cdot \frac{f(\beta\tau)}{f(\tau)}$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Automorphic Factors

Let $f \in M_k$ and define $j(\gamma; \tau) := (c\tau + d)^k$. Then, for $\alpha, \beta \in \Gamma$,

$$\frac{f(\alpha\beta\tau)}{f(\tau)} = \frac{f(\alpha\beta\tau)}{f(\beta\tau)} \cdot \frac{f(\beta\tau)}{f(\tau)}.$$

This implies

$$j(\alpha\beta;\tau) = j(\alpha;\beta\tau)j(\beta;\tau).$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Automorphic Factors

Let $f \in M_k$ and define $j(\gamma; \tau) := (c\tau + d)^k$. Then, for $\alpha, \beta \in \Gamma$,

$$\frac{f(\alpha\beta\tau)}{f(\tau)} = \frac{f(\alpha\beta\tau)}{f(\beta\tau)} \cdot \frac{f(\beta\tau)}{f(\tau)}.$$

This implies

$$j(\alpha\beta;\tau) = j(\alpha;\beta\tau)j(\beta;\tau).$$

A function $j(\gamma; \tau)$ holomorphic on \mathbb{H} satisfying this relation is called an **automorphic factor**.

Automorphic Factors

Let $f \in M_k$ and define $j(\gamma; \tau) := (c\tau + d)^k$. Then, for $\alpha, \beta \in \Gamma$,

$$\frac{f(\alpha\beta\tau)}{f(\tau)} = \frac{f(\alpha\beta\tau)}{f(\beta\tau)} \cdot \frac{f(\beta\tau)}{f(\tau)}.$$

This implies

$$j(\alpha\beta;\tau) = j(\alpha;\beta\tau)j(\beta;\tau).$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

A function $j(\gamma; \tau)$ holomorphic on \mathbb{H} satisfying this relation is called an **automorphic factor**.

Question

Is
$$j(\gamma, au) := (c au + d)^{k/2}$$
 an automorphic factor?

Counterexample

Consider

$$\gamma_1 = \begin{pmatrix} 4 & 3 \\ -3 & -2 \end{pmatrix} \qquad \qquad \gamma_2 = \begin{pmatrix} 1 & 0 \\ -3 & 1 \end{pmatrix}$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Counterexample

Consider

$$\gamma_1 = \begin{pmatrix} 4 & 3 \\ -3 & -2 \end{pmatrix} \qquad \qquad \gamma_2 = \begin{pmatrix} 1 & 0 \\ -3 & 1 \end{pmatrix}$$

For $(c\tau + d)^{k/2}$ to be an automorphic factor, we would need

$$\sqrt{3\tau-2} = \sqrt{\frac{-3\tau}{1-3\tau}-2} \cdot \sqrt{1-3\tau}.$$

Counterexample

Consider

$$\gamma_1 = \begin{pmatrix} 4 & 3 \\ -3 & -2 \end{pmatrix} \qquad \qquad \gamma_2 = \begin{pmatrix} 1 & 0 \\ -3 & 1 \end{pmatrix}$$

For $(c\tau+d)^{k/2}$ to be an automorphic factor, we would need

$$\sqrt{3\tau-2} = \sqrt{\frac{-3\tau}{1-3\tau}-2} \cdot \sqrt{1-3\tau}.$$

This relation squared holds so the kth power of the relation holds up to a sign;

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ □臣 ○のへ⊙

Counterexample

Consider

$$\gamma_1 = \begin{pmatrix} 4 & 3 \\ -3 & -2 \end{pmatrix} \qquad \qquad \gamma_2 = \begin{pmatrix} 1 & 0 \\ -3 & 1 \end{pmatrix}$$

For $(c\tau+d)^{k/2}$ to be an automorphic factor, we would need

$$\sqrt{3\tau-2} = \sqrt{\frac{-3\tau}{1-3\tau}-2} \cdot \sqrt{1-3\tau}.$$

This relation squared holds so the *k*th power of the relation holds up to a sign; however, it's the wrong sign, so $(c\tau + d)^{k/2}$ is not an automorphic factor.

Counterexample

Consider

$$\gamma_1 = \begin{pmatrix} 4 & 3 \\ -3 & -2 \end{pmatrix} \qquad \qquad \gamma_2 = \begin{pmatrix} 1 & 0 \\ -3 & 1 \end{pmatrix}$$

For $(c au+d)^{k/2}$ to be an automorphic factor, we would need

$$\sqrt{3\tau-2} = \sqrt{\frac{-3\tau}{1-3\tau}-2} \cdot \sqrt{1-3\tau}.$$

This relation squared holds so the *k*th power of the relation holds up to a sign; however, it's the wrong sign, so $(c\tau + d)^{k/2}$ is not an automorphic factor.

We can fix this though, since it almost works.

Modular Forms With Half-Integral Weight

Define

$$j(\gamma; \tau) = \left(\frac{c}{d}\right) \varepsilon_d^{-1} (c\tau + d)^{1/2},$$

where $\left(\frac{c}{d}\right)$ is a Kronecker character and

$$\varepsilon_d^{-1} = \begin{cases} 1 & \text{if } d \equiv 1 \pmod{4} \\ i & \text{if } d \equiv 3 \pmod{4}. \end{cases}$$

Modular Forms With Half-Integral Weight

Define

$$j(\gamma; \tau) = \left(\frac{c}{d}\right) \varepsilon_d^{-1} (c\tau + d)^{1/2},$$

where $\left(\frac{c}{d}\right)$ is a Kronecker character and

$$\varepsilon_d^{-1} = \begin{cases} 1 & \text{if } d \equiv 1 \pmod{4} \\ i & \text{if } d \equiv 3 \pmod{4}. \end{cases}$$

Definition

A modular form of weight k/2 with k odd on $\Gamma_0(4N)$ is a function $f: \mathbb{H} \to \mathbb{C}$ that is is holomorphic on \mathbb{H} and at infinity and such that for all $\gamma \in \Gamma_0(4N)$ we have

$$f(\gamma \tau) = j(\gamma; \tau)^k f(\tau).$$

Back to $\eta(\tau)$

• Now that we've defined what it means to be modular with half-integral weight, we can return to investigating $\eta(\tau)$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Back to $\eta(\tau)$

- Now that we've defined what it means to be modular with half-integral weight, we can return to investigating $\eta(\tau)$
- The function $\eta(\tau)$ is a modular form of weight 1/2, but the factor of $q^{1/24} = e^{i\pi\tau/12}$ slightly complicates its transformation under Γ

Back to $\eta(\tau)$

- Now that we've defined what it means to be modular with half-integral weight, we can return to investigating $\eta(\tau)$
- The function $\eta(\tau)$ is a modular form of weight 1/2, but the factor of $q^{1/24} = e^{i\pi\tau/12}$ slightly complicates its transformation under Γ

Consider how η transforms under $T = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}$, we have that

$$egin{aligned} &\eta(au+1)=e^{rac{i\pi(au+1)}{12}}\prod_{n\geq 1}\left(1-e^{2\pi i(au+1)n}
ight)\ &=e^{rac{i\pi}{12}}q^{rac{1}{24}}\prod_{n\geq 1}\left(1-q^ne^{2\pi in}
ight)\ &=e^{rac{i\pi}{12}}\eta(au). \end{aligned}$$

Transformation of $\eta(\tau)$ on S

The transformation of
$$\eta$$
 on $S = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}$, is given by
 $\eta \left(-\frac{1}{\tau} \right) = (-i\tau)^{1/2} \eta(\tau).$

Transformation of $\eta(\tau)$ on S

The transformation of
$$\eta$$
 on $S = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}$, is given by

$$\eta\left(-\frac{1}{\tau}\right) = (-i\tau)^{1/2}\eta(\tau).$$

This can be proved using properties of the logarithmic derivative of $\eta(\tau)$ or using the Euler pentagonal number theorem and the representation of η as a theta series

$$\eta(\tau) = \sum_{n \ge 1} \chi_{12}(n) q^{\frac{n^2 - 1}{24}}$$

Transformation of $\eta(\tau)$ on S

The transformation of
$$\eta$$
 on $S = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}$, is given by

$$\eta\left(-\frac{1}{\tau}\right) = (-i\tau)^{1/2}\eta(\tau).$$

This can be proved using properties of the logarithmic derivative of $\eta(\tau)$ or using the Euler pentagonal number theorem and the representation of η as a theta series

$$\eta(\tau) = \sum_{n \ge 1} \chi_{12}(n) q^{\frac{n^2 - 1}{24}}$$

These can be expanded into a full multiplier system for $\eta(\tau)$.

Using the Modularity of $\eta(\tau)$

The modularity of $\eta(\tau)$ has been the key for many famous results about partitions, including the Hardy-Ramanujan asymptotic.

Using the Modularity of $\eta(\tau)$

The modularity of $\eta(\tau)$ has been the key for many famous results about partitions, including the Hardy-Ramanujan asymptotic.

Theorem (Hardy-Ramanujan)

The partition function p(n) satisfies

$$p(n) \sim rac{1}{4n\sqrt{3}}e^{\pi\sqrt{rac{2n}{3}}}$$

Using the Modularity of $\eta(\tau)$

The modularity of $\eta(\tau)$ has been the key for many famous results about partitions, including the Hardy-Ramanujan asymptotic.

Theorem (Hardy-Ramanujan)

The partition function p(n) satisfies

$$p(n) \sim \frac{1}{4n\sqrt{3}}e^{\pi\sqrt{\frac{2n}{3}}}$$

Hardy and Ramanujan invented the "circle method" to prove this, which computes the coefficients of P(q) near the singularities of $1/\eta(\tau)$ at roots of unity.

Conclusion

Thank You!

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Conclusion

- Kong, Y., Teo, L. An Elementary Proof of the Transformation Formula for the Dedekind Eta Function. arxiv: 2302.03280v1
- Rolen, L. Modular Forms: Theory and Applications. Lecture notes on https://math.vanderbilt.edu/rolenl/

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00