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Dirichlet Generating Functions and Number Theory

Background

Number Theoretic Functions

The Möbius function

Definition

The Möbius function is the number-theoretic function given by

µ(n) =


1 if n = 1

0 if p2|n
(−1)s if n is the product of s distinct primes

Example

Some relevant values of µ for a prime number p are

µ(1) = 1, µ(p) = (−1)1 = −1, µ(pk) = 0 for k ≥ 2.
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Background

Number Theoretic Functions

The Sum of Divisors Function

Definition

The sum of divisors function is the number-theoretic function
given by

σ(n) =
∑
d |n

d .

Example

For a prime number p

σ(1) = 1, σ(p) = 1 + p, σ(pk) = 1 + p + p2 + ...+ pk .
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Background

Number Theoretic Functions

The Euler Totient Function

Definition

The Euler totient function, ϕ(n), is defined as the number of
positive integers ≤ n that are coprime with n.

Example

For a prime number p

ϕ(1) = 1, ϕ(p) = p − 1, ϕ(pk) = pk − pk−1.
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Background

Number Theoretic Functions

Dirichlet Product

Definition

For two number-theoretic functions f , g , we define the Dirichlet
product of f and g by

(f ∗ g)(n) =
∑
d |n

f (d)g(n/d) =
∑
d |n

f (n/d)g(d).

Remark

We have the following relevant Dirichlet products

(µ ∗ σ)(n) = n, (1 ∗ ϕ)(n) = n.
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Background

The Riemann Zeta Function

Definition

For s ∈ C with σ > 1, we define the Riemann zeta function

ζ(s) :=
∞∑
n=1

1

ns
.

Theorem (Euler Product Representation)

We have the following representation of ζ as an infinite product
over the prime numbers,

ζ(s) =
∏
p

(
1− 1

ps

)−1

.
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Dirichlet Generating Functions

Dirichlet Generating Functions

Definition

A Dirichlet generating function (DGF) is a series of the form

∞∑
n=1

f (n)

ns
,

where s ∈ C and f (n) is an arithmetic function f : N→ C.

Example

The zeta function is the DGF over f (n) = 1 for all n ∈ N

∞∑
n=1

f (n)

ns
=

∞∑
n=1

1

ns
= ζ(s).
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Dirichlet Generating Functions

Proposition

The DGF of a multiplicative function, f , can be represented as an
Euler product, namely

∞∑
n=1

f (n)

ns
=
∏
p

(
1 +

f (p)

ps
+

f (p2)

p2s
+ ...

)
,

where the product is over all prime numbers.
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Dirichlet Generating Functions

Product of DGFs

Lemma

Let F (s) =
∑∞

n=1 f (n)/n
s and G (s) =

∑∞
n=1 g(n)/n

s be two
Dirichlet series. Then, we have

F (s)G (s) =
∞∑
n=1

(f ∗ g)(n)
ns

.
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Dirichlet Generating Functions

DGF for µ

Theorem

The Dirichlet generating function for µ is

∞∑
n=1

µ(n)

ns
=

1

ζ(s)
.
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Dirichlet Generating Functions

Proof of µ DGF

Proof.

∞∑
n=1

µ(n)

ns
=
∏
p

(
1 +

µ(p)

ps
+

µ(p2)

p2s
+ ...

)

=
∏
p

(
1 +
−1
ps

+
0

p2s
+ ...

)

=
∏
p

(
1− 1

ps

)
=

(∏
p

1

1− 1/ps

)−1

=
1

ζ(s)
.

■
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Dirichlet Generating Functions

DGF for σ

Theorem

The Dirichlet generating function for σ is

∞∑
n=1

σ(n)

ns
= ζ(s)ζ(s − 1).

Remark

Since we have shown that the DGF for µ is 1/ζ(s), we will prove

1

ζ(s)
·

∞∑
n=1

σ(n)

ns
= ζ(s − 1).
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Dirichlet Generating Functions

DGF for ϕ

Theorem

The Dirichlet generating function for ϕ is

∞∑
n=1

σ(n)

ns
=

ζ(s − 1)

ζ(s)
.

Remark

We will show the equivalent statement

ζ(s) ·
∞∑
n=1

ϕ(n)

ns
= ζ(s − 1).
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Recent Combinatorial Results

Recent Combinatorial Results Using DGFs

Recent work of Ken Ono, Robert Schneider, and Ian Wagner

“Pseudo-bijection” between certain restricted partitions

Analogous to the combinatorial interpretation of Pentagonal
Number Theorem and Franklin’s proof

Proven analytically using DGFs and new number-theoretic
tool of “partition-theoretic analogies”

Combinatorial interpretation is a corollary of the analytic
results
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Recent Combinatorial Results

Pentagonal Numbers

Definition

The nth pentagonal number, denoted gn, is the number of dots
in the outlines of nested regular pentagons with side lengths
ranging from 1 to n dots and sharing one vertex.

Example

The first few are g1 = 1, g2 = 5, g3 = 12, g4 = 22, g5 = 35.
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Recent Combinatorial Results

Pentagonal Number Theorem

Theorem (Euler’s Pentagonal Number Theorem)

We have that

∞∏
n=1

(1− qn) =
+∞∑
−∞

(−1)nqn(3n+1)/2

A famous combinatorial proof was given by Franklin

Uses a “pseudo-bijection” between distinct even and distinct
odd partitions, with exceptions at pentagonal number inputs

←→
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Recent Combinatorial Results

Combinatorial Interpretation of PNT

Notation

Let

D+(n) denote the number of partitions of n into an even
number of distinct parts,

D−(n) denote the number of partitions of n into an odd
number of distinct parts.

Theorem (“Pseudo-bijection”)

D+(n)− D−(n) =

{
(−1)j if n is a pentagonal number

0 otherwise.
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Recent Combinatorial Results

Defining Our Restricted Partitions

Definition (Ono, Schneider, Wagner)

Let

1 D+
even(n) denote the number of partitions of n into an even

number of distinct parts with smallest part even,

2 D+
odd(n) denote the number of partitions of n into an even

number of distinct parts with smallest part odd,

3 D−
even(n) denote the number of partitions of n into an odd

number of distinct parts with smallest part even,

4 D−
odd(n) denote the number of partitions of n into an odd

number of distinct parts with smallest part odd.
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Recent Combinatorial Results

Statement of Partition Relation

Theorem (Ono, Schneider, Wagner)

For distinct partitions whose smallest part is odd, we have

D+
odd(n)− D−

odd(n) =


0 if n is not a square

1 if n is an even square

−1 if n is an odd square.
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Recent Combinatorial Results

Statment of Partition Relation Cont.

Theorem (Ono, Schneider, Wagner)

For distinct partitions whose smallest part is even, we have

D+
even(n)− D−

even(n)

=



−1 n is an even square & not a pentagonal number

1 n is an odd square & not a pentagonal number

1 n is an even index pentagonal number & not a square

−1 n is an odd index pentagonal number & not a square

0 otherwise.
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Recent Combinatorial Results

How Do We Prove This?

The full proof of this fact is far out of the scope of this
presentation.

We will give a brief heuristic for how the proof works and
where DGFs get involved.

The idea is to find “partition-theoretic analogs” of traditional
number theoretic and combinatorial concepts.

Natural number m Partition λ

Prime factors of m Parts of λ

Square-free integers Partitions into distinct parts

µ(m) µP(λ)

m−s q|λ|
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number theoretic and combinatorial concepts.

Natural number m Partition λ

Prime factors of m Parts of λ

Square-free integers Partitions into distinct parts

µ(m) µP(λ)

m−s q|λ|
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A Look at the Partition-Theoretic DGF

Definition

The partition-theoretic Möbius function is defined as

µP(λ) :=

{
0 if λ has repeated parts

(−1)ℓ(λ) otherwise

Remark

Using that the analogy for n−s is q|λ|, we have that the DGF for
µP is ∑

λ∈P
µP(λ)q

|λ| =
∞∏
n=1

(1− qn).
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Main Theorem

Theorem (Ono, Schneider, Wagner)

The following identities are true

∑
λ∈P

sm(λ)∈S1,2

−µP(λ)q
|λ| =

∞∑
n=1

(−1)n+1qn
2
,

∑
λ∈P

sm(λ)∈S2,2

−µP(λ)q
|λ| = 1 +

∞∑
n=1

(−1)nqn2 −
∞∑

m=−∞
(−1)mq

m(3m−1)
2 .
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Conclusion

DGFs are a powerful tool in combinatorics and number theory.

They have beautiful relations to both combinatorial and
analytic objects.

They are still being used widely in number theory and
combinatorics.
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Thank You!
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