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Introduction

The Riemann Zeta Function

Definition

For s ∈ C with σ > 1, we define the Riemann zeta function

ζ(s) :=
∞∑
n=1

1

ns
.

Theorem (Euler Product Representation)

We have the following representation of ζ as an infinite product
over the prime numbers,

ζ(s) =
∏
p

(
1− 1

ps

)−1

.
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Mellin Transforms

Definition

Let f : R+ → C be a continuous function which rapidly decays at
∞ and satisfies f ∈ O(t−C ) as t → 0. We define the Mellin
transform of f by

M{f }(s) =
∫ ∞

0
f (t)ts−1dt =

∫ ∞

0
f (t)ts

dt

t
.

Remark

M{f }(s) converges absolutely and normally for Re(s) > C .
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Properties of the Mellin Transform

Properties

1 M{f (at)}(s) = a−sM{f }(s)

2 M{taf (t)}(s) = M{f }(s + a)

3 M
{
1
t f

(
1
t

)}
(s) = M{f }(1− s)

Mellin Principle

Let ϕ : R+ → C be a continuous function satisfying

ϕ

(
1

t

)
=

J∑
j=1

Aj t
λj + thϕ(t).

Then, M{ϕ}(s) has a meromorphic analytic continuation to all of
C, with poles at s = λ1, ..., λJ .
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Oops all Mellins

The Gamma Function

Definition

The Gamma function is defined as

Γ(s) =

∫ ∞

0
e−tts−1dt,

and satisfies Γ(s + 1) = sΓ(s).

Remark

We can note that

M{e−t}(s) =
∫ ∞

0
e−tts

dt

t
= Γ(s).
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A Theta Function

Let ϕ(t) =
∑

n≥1 e
−πn2t . We claim (without proof) that ϕ(t)

satisfies the functional equation required to apply the Mellin
principle. As such, we consider

M{ϕ}(s) =
∫ ∞

0
ts−1 ·

∞∑
n=1

e−πn2tdt

=
∞∑
n=1

∫ ∞

0
ts−1e−πn2tdt.
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A Theta Function

Now consider the substitution πn2t = x so πn2dt = dx , then

M{ϕ}(s) =
∞∑
n=1

∫ ∞

0

( x

πn2

)s−1
e−πxπn2dx

= π−s
∞∑
n=1

1

n2s

∫ ∞

0
x s−1e−xdx

= π−s
∞∑
n=1

1

n2s
Γ(s)

= π−sΓ(s)ζ(2s).

Thus, M{ϕ}(s) = π−sΓ(s)ζ(2s) has a meromorphic continuation
to C.
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Analytic Continuation For Zeta

Completed Zeta Function

Using the previous results, we can define the analytic continuation
for ζ(s) and the completed zeta function.

Definition

The completed zeta function is the entire function given by

ξ(s) :=
1

2
π− s

2 s(s − 1)Γ
( s
2

)
ζ(s),

and satisfies the functional equation ξ(s) = ξ(1− s).

Theorem

The function ζ(s) has an analytic continuation to C with a simple
pole s = 1 and with functional equation

ζ(s) = 2sπs−1 sin
(πs
2

)
Γ(1− s)ζ(1− s).
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Riemann Hypothesis

Facts about ζ(s)

Under its analytic continuation, ζ(s) has zeros at every
negative even integer since Γ(s) has poles at every integer.

From its functional equation, ζ(s) has a line of symmetry at
Re s = 1

2 .

Conjecture (Riemann)

Apart from the negative evens, the zeros of ζ(s) satisfy Re(s) = 1
2 .
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Conclusion

Mellin transforms are powerful tools for understanding ζ(s)
and related functions

Using the same process as above, we can analytically continue
more general L-functions, which replace the 1 in the
numerator of ζ(s).
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Thank You!
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